7 research outputs found

    The Motion of the Spherical Pendulum Subjected to a D_n Symmetric Perturbation

    Get PDF
    The motion of a spherical pendulum is characterized by the fact that all trajectories are relative periodic orbits with respect to its circle group of symmetry (invariance by rotations around the vertical axis). When the rotational symmetry is broken by some mechanical effect, more complicated, possibly chaotic behavior is expected. When, in particular, the symmetry reduces to the dihedral group D_n of symmetries of a regular n-gon, n > 2, the motion itself undergoes dramatic changes even when the amplitude of oscillations is small, which we intend to explain in this paper. Numerical simulations confirm the validity of the theory and show evidence of new interesting effects when the amplitude of the oscillations is larger (symmetric chaos)

    Tippe Top Inversion as a Dissipation-Induced Instability

    Get PDF
    By treating tippe top inversion as a dissipation-induced instability, we explain tippe top inversion through a system we call the modified Maxwell--Bloch equations. We revisit previous work done on this problem and follow Or's mathematical model [SIAM J. Appl. Math., 54 (1994), pp. 597--609]. A linear analysis of the equations of motion reveals that the only equilibrium points correspond to the inverted and noninverted states of the tippe top and that the modified Maxwell--Bloch equations describe the linear/spectral stability of these equilibria. We supply explicit criteria for the spectral stability of these states. A nonlinear global analysis based on energetics yields explicit criteria for the existence of a heteroclinic connection between the noninverted and inverted states of the tippe top. This criteria for the existence of a heteroclinic connection turns out to agree with the criteria for spectral stability of the inverted and noninverted states. Throughout the work we support the analysis with numerical evidence and include simulations to illustrate the nonlinear dynamics of the tippe top

    Dissipation-Induced Heteroclinic Orbits in Tippe Tops

    Get PDF
    This paper demonstrates that the conditions for the existence of a dissipation-induced heteroclinic orbit between the inverted and noninverted states of a tippe top are determined by a complex version of the equations for a simple harmonic oscillator: the modified Maxwell–Bloch equations. A standard linear analysis reveals that the modified Maxwell–Bloch equations describe the spectral instability of the noninverted state and Lyapunov stability of the inverted state. Standard nonlinear analysis based on the energy momentum method gives necessary and sufficient conditions for the existence of a dissipation-induced connecting orbit between these relative equilibria

    A Multiparameter, Numerical Stability Analysis of a Standing Cantilever Conveying Fluid

    Get PDF
    In this paper, we numerically examine the stability of a standing cantilever conveying fluid in a multiparameter space. Based on nonlinear beam theory, our mathematical model turns out to be replete with exciting behavior, some of which was totally unexpected and novel, and some of which confirm our intuition as well as the work of others. The numerical bifurcation results obtained from applying the Library of Continuation Algorithms (LOCA) reveal a plethora of one, two, and higher codimension bifurcations. For a vertical or standing cantilever beam, bifurcations to buckled solutions (via symmetry breaking) and oscillating solutions are detected as a function of gravity and the fluid-structure interaction. The unfolding of these results as a function of the orientation of the beam compared to gravity is also revealed

    Dissipation-Induced Heteroclinic Orbits in Tippe Tops

    Full text link
    corecore