3 research outputs found

    A near infrared frequency comb for Y+J band astronomical spectroscopy

    Full text link
    Radial velocity (RV) surveys supported by high precision wavelength references (notably ThAr lamps and I2 cells) have successfully identified hundreds of exoplanets; however, as the search for exoplanets moves to cooler, lower mass stars, the optimum wave band for observation for these objects moves into the near infrared (NIR) and new wavelength standards are required. To address this need we are following up our successful deployment of an H band(1.45-1.7{\mu}m) laser frequency comb based wavelength reference with a comb working in the Y and J bands (0.98-1.3{\mu}m). This comb will be optimized for use with a 50,000 resolution NIR spectrograph such as the Penn State Habitable Zone Planet Finder. We present design and performance details of the current Y+J band comb.Comment: Submitted to SPIE, conference proceedings 845

    Development of a Learning Progression for the Formation of the Solar System

    No full text
    This study describes the process of defining a hypothetical learning progression (LP) for astronomy around the big idea of Solar System formation. At the most sophisticated level, students can explain how the formation process led to the current Solar System by considering how the planets formed from the collapse of a rotating cloud of gas and dust. Development of this LP was conducted in 2 phases. First, we interviewed middle school, high school, and college students (N = 44), asking them to describe properties of the current Solar System and to explain how the Solar System was formed. Second, we interviewed 6th-grade students (N = 24) before and after a 15-week astronomy curriculum designed around the big idea. Our analysis provides evidence for potential levels of sophistication within the hypothetical LP, while also revealing common alternative conceptions or areas of limited understanding that could form barriers to progress if not addressed by instruction. For example, many students' understanding of Solar System phenomena was limited by either alternative ideas about gravity or limited application of momentum in their explanations. Few students approached a scientific-level explanation, but their responses revealed possible stepping stones that could be built upon with appropriate instruction
    corecore