12 research outputs found

    Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments

    No full text
    The aim of this research was to investigate the genetic basis for variation in root penetration ability and associated traits in the mapping population derived from the Australian bread wheat cultivars Halberd and Cranbrook in soil columns containing wax layers grown in controlled conditions and to compare this with performance in the field. Root and shoot traits of the doubled haploid line (DHL) from a cross of Halberd and Cranbrook were evaluated in soil columns containing wax layers. Contrasting DHLs that varied in the ability to penetrate a wax layer in soil columns were then evaluated for maximum root depth in the field on contrasting soils at Merredin, Western Australia. Genetic control was complex, and numerous quantitative trait loci (QTL) (53 in total) were located across most chromosomes that had a small genetic effect (LOD scores of 3.2–9.1). Of these QTL, 29 were associated with root traits, 37\ua0% of which were contributed positively by the Halberd with key traits being located on chromosomes 2D, 4A, 6B, and 7B. Variation in root traits of DHL in soil columns was linked with field performance. Despite the complexity of the traits and a large number of small QTL, the results can be potentially used to explore allelic diversity in root traits for hardpan penetration

    A multisite managed environment facility for targeted trait and germplasm phenotyping

    No full text
    Field evaluation of germplasm for performance under water and heat stress is challenging. Field environments are variable and unpredictable, and genotypeenvironment interactions are difficult to interpret if environments are not well characterised. Numerous traits, genes and quantitative trait loci have been proposed for improving performance but few have been used in variety development. This reflects the limited capacity of commercial breeding companies to screen for these traits and the absence of validation in field environments relevant to breeding companies, and because little is known about the economic benefit of selecting one particular trait over another. The value of the proposed traits or genes is commonly not demonstrated in genetic backgrounds of value to breeding companies. To overcome this disconnection between physiological trait breeding and uptake by breeding companies, three field sites representing the main environment types encountered across the Australian wheatbelt were selected to form a set of managed environment facilities (MEFs). Each MEF manages soil moisture stress through irrigation, and the effects of heat stress through variable sowing dates. Field trials are monitored continuously for weather variables and changes in soil water and canopy temperature in selected probe genotypes, which aids in decisions guiding irrigation scheduling and sampling times. Protocols have been standardised for an essential core set of measurements so that phenotyping yield and other traits are consistent across sites and seasons. MEFs enable assessment of a large number of traits across multiple genetic backgrounds in relevant environments, determine relative trait value, and facilitate delivery of promising germplasm and high value traits into commercial breeding programs
    corecore