119 research outputs found

    Optical predistortion enabling phase preservation in optical signal processing demonstrated in FWM-based amplitude limiter

    No full text
    We propose and demonstrate a technique to obtain phase preservation in optical processing which is suitable for many four-wave mixing (FWM) based processing devices, provided they may be modified to incorporate two conjugating FWM stages. It functions by using a first conjugating nonlinear stage to predistort the signal using self-phase modulation (SPM) such that when the signal undergoes further SPM in a second conjugating FWM stage, the two SPM contributions negate each other, resulting in phase preserving output. In this work, we use the second stage to perform amplitude squeezing through parametric gain saturation and characterise the scheme by regenerating a QPSK signal contaminated with broadband amplitude noise. Experimental analysis of the system with and without predistortion is provided and phase preserving operation using the proposed scheme is confirmed

    SOA-based, idler-free phase quantiser

    No full text
    Energy consumption, system complexity and potential for integration are important factors when considering the suitability of all-optical processing, and depend upon both the scheme used and the medium in which it is performed. We have recently proposed a simple, wavelength-converting phase quantising scheme based on an idler-free phase-sensitive amplifier, notable for its flexibility of operating power and relative compactness [1]. We have demonstrated its performance for QPSK regeneration using an operating power of 24 dBm in 300 m of highly nonlinear fibre (HNLF). Despite offering low loss and high net nonlinearity, the size and geometry of the HNLF do not make it suitable for integration in a photonic device. Semiconductor optical amplifiers (SOAs) on the other hand, offer a particularly compact medium for nonlinear signal processing, combining an amplifier and nonlinear medium in one device. BPSK phase regeneration has been demonstrated in SOAs [2]; in this paper we experimentally demonstrate, to our knowledge, the first realisation of QPSK phase regeneration in SOAs, making use of the above idler-free scheme to realise a compact and more easily integrated QPSK regenerator

    Investigation into the role of pump to signal power ratio in FWM-based phase preserving amplitude regeneration

    No full text
    We carry out a detailed experimental characterization of a four-wave mixing based amplitude limiter in highly nonlinear fiber based on the Bessel-like power transfer characteristics and highlight trade-offs for phase preserving capabilities

    Phase regeneration of QPSK signal in SOA using single-stage, wavelength converting PSA

    No full text
    We demonstrate, for the first time, all-optical phase regeneration of a quaternary phase shift keying (QPSK) signal through phase sensitive amplification (PSA) in nonlinear semiconductor optical amplifiers (SOAs), using a scheme only previously demonstrated in highly nonlinear fibre (HNLF). We make use of a highly tunable phase quantising scheme to circumvent some of the limitations imposed by the use of SOAs and show that it may function in either a conjugating or non-conjugating manner

    Multi-channel all-optical signal processing based on parametric effects

    No full text
    Two different experiments that use parametric effects for the processing of multiple signals in a single fiber are reviewed. The first experiment uses optical phase conjugation to mitigate the effects of nonlinearity in transmission, whereas the second uses multiple phase-sensitive amplifiers to regenerate six different channels

    Multichannel Nonlinear Equalization in Coherent WDM Systems based on Bi-directional Recurrent Neural Networks

    Full text link
    Kerr nonlinearity in the form of self- and cross-phase modulation imposes a fundamental limitation to the capacity of wavelength division multiplexed (WDM) optical communication systems. Digital back-propagation (DBP), that requires solving the inverse-propagating nonlinear Schr\"odinger equation (NLSE), is a widely adopted technique for the mitigation of impairments induced by Kerr nonlinearity. However, multi-channel DBP is too complex to be implemented commercially in WDM systems. Recurrent neural networks (RNNs) have been recently exploited for nonlinear signal processing in the context of optical communications. In this work, we propose multi-channel equalization through a bidirectional vanilla recurrent neural network (bi-VRNN) in order to improve the performance of the single-channel bi-VRNN algorithm in the transmission of WDM M-QAM signals. We compare the proposed digital algorithm to full-field DBP and to the single channel bi-RNN in order to reveal its merits with respect to both performance and complexity. We finally provide experimental verification through a QPSK metro link, showcasing over 2.5 dB optical signal-to-noise ratio (OSNR) gain and up to 43% complexity reduction with respect to the single-channel RNN and the DBP.Comment: 9 page

    FWM-based, Idler-free Phase Quantiser with Flexible Operating Power

    Full text link
    Coherently adding a signal's conjugate and third harmonic at the latter's wavelength enables phase quantisation across a large operating power range. With broadband phase noise, a 5.6dB QPSK receiver sensitivity improvement is achieved with BER=10-4

    All-optical phase regeneration with record PSA extinction ratio in a low-birefringence silicon germanium waveguide

    No full text
    We report a low-power continuous wave-pumped phase sensitive amplifier (PSA)-based phase regenerator implemented in a passive silicon-based waveguide. A polarization assisted-PSA, consisting of two orthogonally-polarized pumps and a phase-locked signal copolarized to one of them, was implemented in a low-birefringence silicon germanium (SiGe) waveguide. The strong TE/TM modal symmetry of the waveguide and its large nonlinear coefficient enabled the achievement of an extremely large phase sensitive extinction ratio of approximately 29 dB for a total input power of only 21.3 dBm. This SiGe-based PSA was used to demonstrate phase regeneration on a 20 Gb/s differential phase-shift keying signal, thereby reducing its error vector magnitude and phase error by three and six times respectively and enabling a bit-error ratio improvement of up to 2 dB

    The structure of the core NuRD repression complex provides insights into its interaction with chromatin

    Get PDF
    The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromati

    Advanced nonlinear signal processing in silicon-based waveguides

    No full text
    This talk presents recent progress in optical signal processing based on compact waveguides fabricated mainly using silicon germanium alloys. Applications include supercontinuum generation, wavelength conversion and signal regeneration
    corecore