5 research outputs found

    Analysis of osteoarthritis in a mouse model of the progeroid human DNA repair syndrome trichothiodystrophy

    Get PDF
    The increasing average age in developed societies is paralleled by an increase in the prevalence of many age-related diseases such as osteoarthritis (OA), which is characterized by deformation of the joint due to cartilage damage and increased turnover of subchondral bone. Consequently, deficiency in DNA repair, often associated with premature aging, may lead to increased pathology of these two tissues. To examine this possibility, we analyzed the bone and cartilage phenotype of male and female knee joints derived from 52- to 104-week-old WT C57Bl/6 and trichothiodystrophy (TTD) mice, who carry a defect in the nucleotide excision repair pathway and display many features of premature aging. Using micro-CT, we found bone loss in all groups of 104-week-old compared to 52-week-old mice. Cartilage damage was mild to moderate in all mice. Surprisingly, female TTD mice had less cartilage damage, proteoglycan depletion, and osteophytosis compared to WT controls. OA severity in males did not significantly differ between genotypes, although TTD males had less osteophytosis. These results indicate that in premature aging TTD mice age-related changes in cartilage were not more severe compared to WT mice, in striking contrast with bone and many other tissues. This segmental aging character may be explained by a difference in vasculature and thereby oxygen load in cartilage and bone. Alternatively, a difference in impact of an anti-aging response, previously found to be triggered by accumulation of DNA damage, might help explain why female mice were protected from cartilage damage. These findings underline the exceptional segmental nature of progeroid conditions and provide an explanation for pro- and anti-aging features occurring in the same individual

    Evaluation of intraarterial and intravenous cisplatin chemotherapy in the treatment of metastatic osteosarcoma using an orthotopic xenograft mouse model

    Full text link
    BACKGROUND: Osteosarcoma is the most common primary malignancy of bone. Its treatment relies on the administration of neoadjuvant and adjuvant chemotherapy combined with surgery. Alternative to common intravenous (i.v.) administration of chemotherapeutic drugs, clinical studies also evaluated the benefit of intraarterial (i.a.) administrations. However, conflicting results were obtained when both routes of administration of cisplatin (CDDP), a gold standard drug in osteosarcoma treatment, were compared. In order to overcome clinical confounding factors, we evaluated both routes of drug administration in a mouse model of experimental osteosarcoma. METHODS: We directly compared i.v. versus i.a. drug infusions of cisplatin (CDDP), in an orthotopic xenograft mouse model of metastatic osteosarcoma. We performed tumor monitoring using caliper and micro computed tomography and measured tumor perfusion using laser speckle contrast imaging. Histopathological changes were evaluated using hematoxylin and eosin staining as well as immunohistochemistry (cleaved PARP-1, CD31, HIF-1α). RESULTS: First, an effective concentration of 4 mg/kg i.a. CDDP was determined that significantly reduced primary tumor volume. We used this concentration of i.a. CDDP and compared it to infusions of i.v. CDDP. Systemic (i.v.) CDDP only showed minor suppression of tumor growth whereas local (i.a.) CDDP strongly inhibited tumor growth and destruction of cortical bone in the tumor-bearing hind limb. Inhibition of tumor growth was linked to a reduced blood perfusion and resulted in increased amounts of tumor necrosis after i.a. CDDP. After treatment with i.a. CDDP, remaining viable tumor tissue responded by increasing expression of HIF-1α. Side effects due to administration of CDDP were minor, showing no differences in kidney damage between i.v. and i.a. CDDP. However, increased epidermal apoptosis in the foot was an indirect marker for locally increased concentrations of CDDP. CONCLUSIONS: Our findings demonstrate the great potential of local administration of cytotoxic chemotherapeutics, such as CDDP. Consequently, we provide a preclinical basis for a renewed interest in the clinical use of i.a. chemotherapy in osteosarcoma therapy

    Prognostic value of tumor suppressors in osteosarcoma before and after neoadjuvant chemotherapy

    Get PDF
    BACKGROUND Primary bone cancers are among the deadliest cancer types in adolescents, with osteosarcomas being the most prevalent form. Osteosarcomas are commonly treated with multi-drug neoadjuvant chemotherapy and therapy success as well as patient survival is affected by the presence of tumor suppressors. In order to assess the prognostic value of tumor-suppressive biomarkers, primary osteosarcoma tissues were analyzed prior to and after neoadjuvant chemotherapy. METHODS We constructed a tissue microarray from high grade osteosarcoma samples, consisting of 48 chemotherapy naïve biopsies (BXs) and 47 tumor resections (RXs) after neoadjuvant chemotherapy. We performed immunohistochemical stainings of P53, P16, maspin, PTEN, BMI1 and Ki67, characterized the subcellular localization and related staining outcome with chemotherapy response and overall survival. Binary logistic regression analysis was used to analyze chemotherapy response and Kaplan-Meier-analysis as well as the Cox proportional hazards model was applied for analysis of patient survival. RESULTS No significant associations between biomarker expression in BXs and patient survival or chemotherapy response were detected. In univariate analysis, positive immunohistochemistry of P53 (P = 0.008) and P16 (P16; P = 0.033) in RXs was significantly associated with poor survival prognosis. In addition, presence of P16 in RXs was associated with poor survival in multivariate regression analysis (P = 0.003; HR = 0.067) while absence of P16 was associated with good chemotherapy response (P = 0.004; OR = 74.076). Presence of PTEN on tumor RXs was significantly associated with an improved survival prognosis (P = 0.022). CONCLUSIONS Positive immunohistochemistry (IHC) of P16 and P53 in RXs was indicative for poor overall patient survival whereas positive IHC of PTEN was prognostic for good overall patient survival. In addition, we found that P16 might be a marker of osteosarcoma chemotherapy resistance. Therefore, our study supports the use of tumor RXs to assess the prognostic value of biomarkers
    corecore