1,217 research outputs found
Analyzing the Multiwavelength Spectrum and Variability of BL Lacertae During the July 1997 Outburst
The multiwavelength spectrum of BL Lacertae during its July 1997 outburst is
analyzed in terms of different variations of the homogeneous leptonic jet model
for the production of high-energy radiation from blazars. We find that a
two-component gamma-ray spectrum, consisting of a synchrotron self-Compton and
an external Compton component, is required in order to yield an acceptable fit
to the broadband spectrum. Our analysis indicates that in BL Lac, unlike other
BL Lac objects, the broad emission line region plays an important role for the
high-energy emission. Several alternative blazar jet models are briefly
discussed. In the appendix, we describe the formalism in which the process of
Comptonization of reprocessed accretion disk photons is treated in the
previously developed blazar jet simulation code which we use.Comment: Now accepted for publication in The Astronomical Journal.
Significantly extended discussion w.r.t. original version. 3 Figures included
using epsf.sty, rotate.st
Transformation Properties of External Radiation Fields, Energy-Loss Rates and Scattered Spectra, and a Model for Blazar Variability
We treat transformation properties of external radiation fields in the proper
frame of a plasma moving with constant speed. The specific spectral energy
densities of external isotropic and accretion-disk radiation fields are derived
in the comoving frame of relativistic outflows, such as those thought to be
found near black-hole jet and gamma-ray burst sources. Nonthermal electrons and
positrons Compton-scatter this radiation field, and high-energy protons and
ions interact with this field through photomeson and photopair production. We
revisit the problem of the Compton-scattered spectrum associated with an
external accretion-disk radiation field, and clarify a past treatment by the
authors. Simple expressions for energy-loss rates and Thomson-scattered spectra
are given for ambient soft photon fields consisting either of a surrounding
external isotropic monochromatic radiation field, or of an azimuthally
symmetric, geometrically thin accretion-disk radiation field. A model for
blazar emission is presented that displays a characteristic spectral and
variability behavior due to the presence of a direct accretion-disk component.
The disk component and distinct flaring behavior can be bright enough to be
detected from flat spectrum radio quasars with {\it GLAST}. Spectral states of
blazars are characterized by the relative importance of the accretion-disk and
scattered radiation fields and, in the extended jet, by the accretion disk,
inner jet, and cosmic microwave background radiation fields.Comment: 43 pages, 12 figures, ApJ, in press; includes improvements in
response to referee report, added references, section of detectability with
GLAS
Field-induced structure transformation in electrorheological solids
We have computed the local electric field in a body-centered tetragonal (BCT)
lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to
examine the effects of a structure transformation on the local field strength.
For the ground state of an electrorheological solid of hard spheres, we
identified a novel structure transformation from the BCT to the face-centered
cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard
sphere constraint. In contrast to the previous results, the local field
exhibits a non-monotonic transition from BCT to FCC. As c increases from the
BCT ground state, the local field initially decreases rapidly towards the
isotropic value at the body-centered cubic lattice, decreases further, reaching
a minimum value and increases, passing through the isotropic value again at an
intermediate lattice, reaches a maximum value and finally decreases to the FCC
value. An experimental realization of the structure transformation is
suggested. Moreover, the change in the local field can lead to a generalized
Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.
Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation
We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of
point dipoles, in an attempt to examine the effects of geometric anisotropy on
the local field distribution. The various problems encountered in the
computation of the conditionally convergent summation of the near field are
addressed and the methods of overcoming them are discussed. The results show
that the geometric anisotropy has a significant impact on the local field
distribution. The change in the local field can lead to a generalized
Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte
Photon-Photon Absorption of Very High Energy Gamma-Rays from Microquasars: Application to LS 5039
Very high energy (VHE) gamma-rays have recently been detected from the
Galactic black-hole candidate and microquasar LS 5039. A plausible site for the
production of these VHE gamma-rays is the region close to the mildly
relativistic outflow. However, at distances comparable to the binary
separation, the intense photon field of the stellar companion will lead to
substantial gamma-gamma absorption of VHE gamma-rays. If the system is viewed
at a substantial inclination (i > 0), this absorption feature will be modulated
on the orbital period of the binary as a result of a phase-dependent
stellar-radiation intensity and pair-production threshold. We apply our results
to LS 5039 and find that (1) gamma-gamma absorption effects will be substantial
if the photon production site is located at a distance from the central compact
object of the order of the binary separation (~ 2.5e12 cm) or less; (2) the
gamma-gamma absorption depth will be largest at a few hundred GeV, leading to a
characteristic absorption trough; (3) the gamma-gamma absorption feature will
be strongly modulated on the orbital period of the binary, characterized by a
spectral hardening accompanying periodic dips of the VHE gamma-ray flux; and
(4) gamma rays can escape virtually unabsorbed, even from within ~ 10^{12} cm,
when the star is located behind the production site as seen by the observer.Comment: Submitted to ApJ Letters. AASTeX, 12 ms pages, including 4 eps
figure
The redshift-dependence of gamma-ray absorption in the environments of strong-line AGN
The case of gamma-ray absorption due to photon-photon pair production of jet
photons in the external photon environment like accretion disk and broad-line
region radiation field of gamma-ray loud active galactic nuclei (AGN) that
exhibit strong emission lines is considered. I demonstrate that this ''local
opacity'', if detected, will almost unavoidably be redshift-dependent in the
sub-TeV range. This introduces non-negligible biases, and complicates
approaches for studying the evolution of the extragalactic background light
with contemporary GeV instruments like e.g. the Gamma-ray Large Area Space
Telescope (GLAST), etc., where the gamma-ray horizon is probed by means of
statistical analysis of absorption features (e.g. Fazio-Stecker relation, etc.)
in AGN spectra at various redshifts. It particularly applies to strong-line
quasars where external photon fields are potentially involved in gamma-ray
production.Comment: 19 pages, 5 figures; accepted for publication in Ap
TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater
This paper proposes a method to assess the potential for thermal use of groundwater and its integration in spatial energy planning. The procedure can be adapted to local regulatory and operational limits, thus estimating legally and technically achievable flow rates and subsequently, the thermal power that can be exchanged with the aquifer through a well doublet.
The constraints applied to flow rates are a drawdown threshold in the extraction well, a limit for the groundwater rise in the injection well and a threshold to avoid the hydraulic breakthrough between the two wells. For the spatial assessment, the hydraulic influence on neighbouring well doublets is simulated with the maximum flow rates before the hydraulic breakthrough occurs. The Thermal Aquifer Potential (TAP) method combines mathematical relations derived through non-linear regression analysis using results from numerical parameter studies. A demonstration of the TAP method is provided with the potential assessment in Munich, Germany. The results are compared with monitoring data from existing open-loop systems, which prove that conservative peak extraction estimates are achieved
Broadband Spectral Analysis of PKS 0528+134: A Report on Six Years of EGRET Observations
The multiwavelength spectra of PKS 0528+134 during six years of observations
by EGRET have been analyzed using synchrotron self-Compton (SSC) and external
radiation Compton (ERC) models. We find that a two-component model, in which
the target photons are produced externally to the gamma-ray emitting region,
but also including an SSC component, is required to suitably reproduce the
spectral energy distributions of the source. Our analysis indicates that there
is a trend in the observed properties of PKS 0528+134, as the source goes from
a gamma-ray low state to a flaring state. We observe that during the higher
gamma-ray states, the bulk Lorentz factor of the jet increases and the ERC
component dominates the high-energy emission. Our model calculations indicate
the trend that the energies of the electrons giving rise to the synchrotron
peak decreases, and the power-ratio of the gamma-ray and low energy spectral
components increases, as the source goes from a low to a high gamma-ray state.Comment: 36 pages, 13 figures, final version accepted for publication in ApJ;
includes minor modification
Flash-Heating of Circumstellar Clouds by Gamma Ray Bursts
The blast-wave model for gamma-ray bursts (GRBs) has been called into
question by observations of spectra from GRBs that are harder than can be
produced through optically thin synchrotron emission. If GRBs originate from
the collapse of massive stars, then circumstellar clouds near burst sources
will be illuminated by intense gamma radiation, and the electrons in these
clouds will be rapidly scattered to energies as large as several hundred keV.
Low-energy photons that subsequently pass through the hot plasma will be
scattered to higher energies, hardening the intrisic spectrum. This effect
resolves the "line-of-death" objection to the synchrotron shock model.
Illuminated clouds near GRBs will form relativistic plasmas containing large
numbers of electron-positron pairs that can be detected within ~ 1-2 days of
the explosion before expanding and dissipating. Localized regions of pair
annihilation radiation in the Galaxy would reveal past GRB explosions.Comment: 9 pages, 1 figure, submitted to ApJ Letter
- …