2,690 research outputs found

    Inner topological structure of Hopf invariant

    Full text link
    In light of ϕ\phi-mapping topological current theory, the inner topological structure of Hopf invariant is investigated. It is revealed that Hopf invariant is just the winding number of Gauss mapping. According to the inner structure of topological current, a precise expression for Hopf invariant is also presented. It is the total sum of all the self-linking and all the linking numbers of the knot family.Comment: 13pages, no figure. Accepted by J.Math.Phy

    Representations of p-brane topological charge algebras

    Full text link
    The known extended algebras associated with p-branes are shown to be generated as topological charge algebras of the standard p-brane actions. A representation of the charges in terms of superspace forms is constructed. The charges are shown to be the same in standard/extended superspace formulations of the action.Comment: 22 pages. Typos fixed, refs added. Minor additions to comments sectio

    Loop space, (2,0) theory, and solitonic strings

    Get PDF
    We present an interacting action that lives in loop space, and we argue that this is a generalization of the theory for a free tensor multiplet. From this action we derive the Bogomolnyi equation corresponding to solitonic strings. Using the Hopf map, we find a correspondence between BPS strings and BPS monopoles in four-dimensional super Yang-Mills theory. This enable us to find explicit BPS saturated solitonic string solutions.Comment: 29 pages, v3: section 5 is rewritten and string solutions are found, v4: a new section on general covariance in loop spac

    The Standard Model Fermion Spectrum From Complex Projective spaces

    Get PDF
    It is shown that the quarks and leptons of the standard model, including a right-handed neutrino, can be obtained by gauging the holonomy groups of complex projective spaces of complex dimensions two and three. The spectrum emerges as chiral zero modes of the Dirac operator coupled to gauge fields and the demonstration involves an index theorem analysis on a general complex projective space in the presence of topologically non-trivial SU(n)xU(1) gauge fields. The construction may have applications in type IIA string theory and non-commutative geometry.Comment: 13 pages. Typset using LaTeX and JHEP3 style files. Minor typos correcte

    Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook

    Full text link
    A crucial task in the analysis of on-line social-networking systems is to identify important people --- those linked by strong social ties --- within an individual's network neighborhood. Here we investigate this question for a particular category of strong ties, those involving spouses or romantic partners. We organize our analysis around a basic question: given all the connections among a person's friends, can you recognize his or her romantic partner from the network structure alone? Using data from a large sample of Facebook users, we find that this task can be accomplished with high accuracy, but doing so requires the development of a new measure of tie strength that we term `dispersion' --- the extent to which two people's mutual friends are not themselves well-connected. The results offer methods for identifying types of structurally significant people in on-line applications, and suggest a potential expansion of existing theories of tie strength.Comment: Proc. 17th ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW), 201

    Link Invariants for Flows in Higher Dimensions

    Full text link
    Linking numbers in higher dimensions and their generalization including gauge fields are studied in the context of BF theories. The linking numbers associated to nn-manifolds with smooth flows generated by divergence-free p-vector fields, endowed with an invariant flow measure are computed in different cases. They constitute invariants of smooth dynamical systems (for non-singular flows) and generalizes previous results for the 3-dimensional case. In particular, they generalizes to higher dimensions the Arnold's asymptotic Hopf invariant for the three-dimensional case. This invariant is generalized by a twisting with a non-abelian gauge connection. The computation of the asymptotic Jones-Witten invariants for flows is naturally extended to dimension n=2p+1. Finally we give a possible interpretation and implementation of these issues in the context of string theory.Comment: 21+1 pages, LaTeX, no figure

    Equivariant Symplectic Geometry of Gauge Fixing in Yang-Mills Theory

    Get PDF
    The Faddeev-Popov gauge fixing in Yang-Mills theory is interpreted as equivariant localization. It is shown that the Faddeev-Popov procedure amounts to a construction of a symplectic manifold with a Hamiltonian group action. The BRST cohomology is shown to be equivalent to the equivariant cohomology based on this symplectic manifold with Hamiltonian group action. The ghost operator is interpreted as a (pre)symplectic form and the gauge condition as the moment map corresponding to the Hamiltonian group action. This results in the identification of the gauge fixing action as a closed equivariant form, the sum of an equivariant symplectic form and a certain closed equivariant 4-form which ensures convergence. An almost complex structure compatible with the symplectic form is constructed. The equivariant localization principle is used to localize the path integrals onto the gauge slice. The Gribov problem is also discussed in the context of equivariant localization principle. As a simple illustration of the methods developed in the paper, the partition function of N=2 supersymmetric quantum mechanics is calculated by equivariant localizationComment: 46 pages, added remarks, typos and references correcte

    Lattice Models with N=2 Supersymmetry

    Get PDF
    We introduce lattice models with explicit N=2 supersymmetry. In these interacting models, the supersymmetry generators Q^+ and Q^- yield the Hamiltonian H={Q^+,Q^-} on any graph. The degrees of freedom can be described as either fermions with hard cores, or as quantum dimers. The Hamiltonian of our simplest model contains a hopping term and a repulsive potential, as well as the hard-core repulsion. We discuss these models from a variety of perspectives: using a fundamental relation with conformal field theory, via the Bethe ansatz, and using cohomology methods. The simplest model provides a manifestly-supersymmetric lattice regulator for the supersymmetric point of the massless 1+1-dimensional Thirring (Luttinger) model. We discuss the ground-state structure of this same model on more complicated graphs, including a 2-leg ladder, and discuss some generalizations.Comment: 4 page

    Topics on the geometry of D-brane charges and Ramond-Ramond fields

    Full text link
    In this paper we discuss some topics on the geometry of type II superstring backgrounds with D-branes, in particular on the geometrical meaning of the D-brane charge, the Ramond-Ramond fields and the Wess-Zumino action. We see that, depending on the behaviour of the D-brane on the four non-compact space-time directions, we need different notions of homology and cohomology to discuss the associated fields and charge: we give a mathematical definition of such notions and show their physical applications. We then discuss the problem of corretly defining Wess-Zumino action using the theory of p-gerbes. Finally, we recall the so-called *-problem and make some brief remarks about it.Comment: 29 pages, no figure

    Superfrustration of charge degrees of freedom

    Get PDF
    We review recent results, obtained with P. Fendley, on frustration of quantum charges in lattice models for itinerant fermions with strong repulsive interactions. A judicious tuning of kinetic and interaction terms leads to models possessing supersymmetry. In such models frustration takes the form of what we call superfrustration: an extensive degeneracy of supersymmetric ground states. We present a gallery of examples of superfrustration on a variety of 2D lattices.Comment: 8 pages, 5 figures, contribution to the proceedings of the XXIII IUPAP International Conference on Statistical Physics (2007) in Genova, Ital
    corecore