13 research outputs found

    Thomson scattering cross section in a magnetized, high-density plasma

    No full text
    We calculate the Thomson scattering cross section in a nonrelativistic, magnetized, high-density plasma—in a regime where collective excitations can be described by magnetohydrodynamics. We show that, in addition to cyclotron resonances and an elastic peak, the cross section exhibits two pairs of peaks associated with slow and fast magnetosonic waves; by contrast, the cross section arising in pure hydrodynamics possesses just a single pair of Brillouin peaks. Both the position and the width of these magnetosonic-wave peaks depend on the ambient magnetic field and temperature, as well as transport and thermodynamic coefficients, and so can therefore serve as a diagnostic tool for plasma properties that are otherwise challenging to measure

    Insensitivity of a turbulent laser-plasma dynamo to initial conditions

    No full text
    It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos

    Role of collisionality and radiative cooling in supersonic plasma jet collisions of different materials

    No full text
    Currently there is considerable interest in creating scalable laboratory plasmas to study the mechanisms behind the formation and evolution of astrophysical phenomena such as Herbig-Haro objects and supernova remnants. Laboratory-scaled experiments can provide a well diagnosed and repeatable supplement to direct observations of these extraterrestrial objects if they meet similarity criteria demonstrating that the same physics govern both systems. Here, we present a study on the role of collision and cooling rates on shock formation using colliding jets from opposed conical wire arrays on a compact pulsed-power driver. These diverse conditions were achieved by changing the wire material feeding the jets, since the ion-ion mean free path (λmfp-ii) and radiative cooling rates (Prad) increase with atomic number. Low Z carbon flows produced smooth, temporally stable shocks. Weakly collisional, moderately cooled aluminum flows produced strong shocks that developed signs of thermal condensation instabilities and turbulence. Weakly collisional, strongly cooled copper flows collided to form thin shocks that developed inconsistently and fragmented. Effectively collisionless, strongly cooled tungsten flows interpenetrated, producing long axial density perturbations

    Role of collisionality and radiative cooling in supersonic plasma jet collisions of different materials

    No full text
    Currently there is considerable interest in creating scalable laboratory plasmas to study the mechanisms behind the formation and evolution of astrophysical phenomena such as Herbig-Haro objects and supernova remnants. Laboratory-scaled experiments can provide a well diagnosed and repeatable supplement to direct observations of these extraterrestrial objects if they meet similarity criteria demonstrating that the same physics govern both systems. Here, we present a study on the role of collision and cooling rates on shock formation using colliding jets from opposed conical wire arrays on a compact pulsed-power driver. These diverse conditions were achieved by changing the wire material feeding the jets, since the ion-ion mean free path (λmfp-ii) and radiative cooling rates (Prad) increase with atomic number. Low Z carbon flows produced smooth, temporally stable shocks. Weakly collisional, moderately cooled aluminum flows produced strong shocks that developed signs of thermal condensation instabilities and turbulence. Weakly collisional, strongly cooled copper flows collided to form thin shocks that developed inconsistently and fragmented. Effectively collisionless, strongly cooled tungsten flows interpenetrated, producing long axial density perturbations

    Transport of high-energy charged particles through spatially-intermittent turbulent magnetic fields

    No full text
    Identifying the sources of the highest energy cosmic rays requires understanding how they are deflected by the stochastic, spatially intermittent intergalactic magnetic field. Here we report measurements of energetic charged-particle propagation through a laser-produced magnetized plasma with these properties. We characterize the diffusive transport of the particles experimentally. The results show that the transport is diffusive and that, for the regime of interest for the highest-energy cosmic rays, the diffusion coefficient is unaffected by the spatial intermittency of the magnetic field

    Evolution of the design and fabrication of astrophysics targets for Turbulent Dynamo (TDYNO) experiments on OMEGA

    No full text
    lthough the overall function of a campaign’s primary target design may remain unchanged, the components and structure often evolve from one shot day to the next to better meet experimental goals. The target fabrication engineer’s involvement in this evolution can be important for advising modifications in order to improve and simplify assembly at the same time. Highly complex targets are constructed by General Atomics (GA) for astrophysics experiments conducted by the University of Chicago at the OMEGA laser facility. Several novel target components are fabricated, precision-assembled, and extensively measured in support of this campaign, and have evolved over the last three years to improve both the science and assembly. Examples include unique laser machined polyimide grids to enhance plasma mixing at target center, precision micromachined cylindrical shields that also act as component spacers, drawn glass target supports to suspend physics packages at critical distances, and tilted pinholes for collimated proton radiography. Target component fabrication and evolution details for this turbulent dynamics (TDYNO) campaign are presented, along with precision-assembly techniques, metrology methods, and considerations for future TDYNO experiments on OMEGA.</p

    Evolution of the design and fabrication of astrophysics targets for Turbulent Dynamo (TDYNO) experiments on OMEGA

    No full text
    lthough the overall function of a campaign’s primary target design may remain unchanged, the components and structure often evolve from one shot day to the next to better meet experimental goals. The target fabrication engineer’s involvement in this evolution can be important for advising modifications in order to improve and simplify assembly at the same time. Highly complex targets are constructed by General Atomics (GA) for astrophysics experiments conducted by the University of Chicago at the OMEGA laser facility. Several novel target components are fabricated, precision-assembled, and extensively measured in support of this campaign, and have evolved over the last three years to improve both the science and assembly. Examples include unique laser machined polyimide grids to enhance plasma mixing at target center, precision micromachined cylindrical shields that also act as component spacers, drawn glass target supports to suspend physics packages at critical distances, and tilted pinholes for collimated proton radiography. Target component fabrication and evolution details for this turbulent dynamics (TDYNO) campaign are presented, along with precision-assembly techniques, metrology methods, and considerations for future TDYNO experiments on OMEGA.</p

    Inefficient magnetic-field amplification in supersonic laser-plasma turbulence

    No full text
    We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic plasma with a large magnetic Reynolds number (Rm≈45\mathrm{Rm} \approx 45) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant. A notable absence of magnetic energy at scales smaller than the outer scale of the turbulent cascade was also observed. Our results support the notion that moderately supersonic, low-magnetic-Prandtl-number plasma turbulence is inefficient at amplifying magnetic fields

    Field reconstruction from proton radiography of intense laser driven magnetic reconnection

    No full text
    Magnetic reconnection is a process that contributes significantly to plasma dynamics and energy transfer in a wide range of plasma and magnetic field regimes, including inertial confinement fusion experiments, stellar coronae, and compact, highly magnetized objects like neutron stars. Laboratory experiments in different regimes can help refine, expand, and test the applicability of theoretical models to describe reconnection. Laser-plasma experiments exploring magnetic reconnection at a moderate intensity (IL ∼1014 W cm-2) have been performed previously, where the Biermann battery effect self-generates magnetic fields and the field dynamics studied using proton radiography. At high laser intensities (ILλL2&gt;1018 Wcm-2μm2), relativistic surface currents and the time-varying electric sheath fields generate the azimuthal magnetic fields. Numerical modeling of these intensities has shown the conditions that within the magnetic field region can reach the threshold where the magnetic energy can exceed the rest mass energy such that σcold = B2/(μ0nemec2) &gt; 1 [A. E. Raymond et al., Phys. Rev. E 98, 043207 (2018)]. Presented here is the analysis of the proton radiography of a high-intensity (∼1018 W cm-2) laser driven magnetic reconnection geometry. The path integrated magnetic fields are recovered using a "field-reconstruction algorithm" to quantify the field strengths, geometry, and evolution
    corecore