36 research outputs found

    Connectivity and resilience of coral reef metapopulations in marine protected areas : matching empirical efforts to predictive needs

    Get PDF
    © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.Work by CB Paris was supported by the National Science Foundation grant NSF-OCE 0550732. Work by M-A Coffroth and SR Thorrold was supported by the National Science Foundation grant NSF-OCE 0424688. Work by TL Shearer was supported by an International Cooperative Biodiversity Group grant R21 TW006662-01 from the Fogarty International Center at the National Institutes of Health

    Relative Impacts of Adult Movement, Larval Dispersal and Harvester Movement on the Effectiveness of Reserve Networks

    Get PDF
    Movement of individuals is a critical factor determining the effectiveness of reserve networks. Marine reserves have historically been used for the management of species that are sedentary as adults, and, therefore, larval dispersal has been a major focus of marine-reserve research. The push to use marine reserves for managing pelagic and demersal species poses significant questions regarding their utility for highly-mobile species. Here, a simple conceptual metapopulation model is developed to provide a rigorous comparison of the functioning of reserve networks for populations with different admixtures of larval dispersal and adult movement in a home range. We find that adult movement produces significantly lower persistence than larval dispersal, all other factors being equal. Furthermore, redistribution of harvest effort previously in reserves to remaining fished areas (‘fishery squeeze’) and fishing along reserve borders (‘fishing-the-line’) considerably reduce persistence and harvests for populations mobile as adults, while they only marginally changes results for populations with dispersing larvae. Our results also indicate that adult home-range movement and larval dispersal are not simply additive processes, but rather that populations possessing both modes of movement have lower persistence than equivalent populations having the same amount of ‘total movement’ (sum of larval and adult movement spatial scales) in either larval dispersal or adult movement alone

    Spearfishing Regulation Benefits Artisanal Fisheries: The ReGS Indicator and Its Application to a Multiple-Use Mediterranean Marine Protected Area

    Get PDF
    The development of fishing efficiency coupled with an increase of fishing effort led to the overexploitation of numerous natural marine resources. In addition to this commercial pressure, the impact of recreational activities on fish assemblages remains barely known. Here we examined the impact of spearfishing limitation on resources in a marine protected area (MPA) and the benefit it provides for the local artisanal fishery through the use of a novel indicator. We analysed trends in the fish assemblage composition using artisanal fisheries data collected in the Bonifacio Strait Natural Reserve (BSNR), a Mediterranean MPA where the spearfishing activity has been forbidden over 15% of its area. Fish species were pooled into three response groups according to their target level by spearfishing. We developed the new flexible ReGS indicator reflecting shifts in species assemblages according to the relative abundance of each response group facing external pressure. The catch per unit effort (CPUE) increased by ca. 60% in the BSNR between 2000 and 2007, while the MPA was established in 1999. The gain of CPUE strongly depended on the considered response group: for the highly targeted group, the CPUE doubled while the CPUE of the untargeted group increased by only 15.5%. The ReGS value significantly increased from 0.31 to 0.45 (on a scale between 0 and 1) in the general perimeter of this MPA while it has reached a threshold of 0.43, considered as a reference point, in the area protected from spearfishing since 1982. Our results demonstrated that limiting recreational fishing by appropriate zoning in multiple-use MPAs represents a real benefit for artisanal fisheries. More generally we showed how our new indicator may reveal a wide range of impacts on coastal ecosystems such as global change or habitat degradation

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    Time and space: genetic structure of the common sea urchin paracentrotus lividus in the south-eastern iberian coast

    Get PDF
    Spatio-temporal variability in settlement and recruitment, high mortality during the first life-history stages, and selection may determine the genetic structure of cohorts of long-lived marine invertebrates at small scales. We conducted a spatial and temporal analysis of the common Mediterranean Sea urchin Paracentrotus lividus to determine the genetic structure of cohorts at different scales. In Tossa de Mar (NW Mediterranean), recruitment was followed over 5 consecutive springs (2006-2010). In spring 2008, recruits and two-year-old individuals were collected at 6 locations along East and South Iberian coasts separated from 200 to over 1,100 km. All cohorts presented a high genetic diversity based on a fragment of mtCOI. Our results showed a marked genetic homogeneity in the temporal monitoring and a low degree of spatial structure in 2006. In 2008, coupled with an abnormality in the usual circulation patterns in the area, the genetic structure of the southern populations studied changed markedly, with arrival of many private haplotypes. This fact highlights the importance of point events in renewing the genetic makeup of populations, which can only be detected through analysis of the cohort structure coupling temporal and spatial perspectives

    Passive acoustic telemetry reveals highly variable home range and movement patterns among unicornfish within a marine reserve

    No full text
    Marine reserves are the primary management tool for Guam’s reef fish fishery. While a build-up of fish biomass has occurred inside reserve boundaries, it is unknown whether reserve size matches the scale of movement of target species. Using passive acoustic telemetry, we quantified movement patterns and home range size of two heavily exploited unicornfish Naso unicornis and Naso lituratus. Fifteen fish (N. unicornis: n = 7; N. lituratus: n = 4 male, n = 4 female) were fitted with internal acoustic tags and tracked continuously over four months within a remote acoustic receiver array located in a decade-old marine reserve. This approach provided robust estimates of unicornfish movement patterns and home range size. The mean home range of 3.2 ha for N. unicornis was almost ten times larger than that previously recorded from a three-week tracking study of the species in Hawaii. While N. lituratus were smaller in body size, their mean home range (6.8 ha) was over twice that of N. unicornis. Both species displayed strong site fidelity, particularly during nocturnal and crepuscular periods. Although there was some overlap, individual movement patterns and home range size were highly variable within species and between sexes. N. unicornis home range increased with body size, and only the three largest fish home ranges extended into the deeper outer reef slope beyond the shallow reef flat. Both Naso species favoured habitat dominated by corals. Some individuals made predictable daily crepuscular migrations between different locations or habitat types. There was no evidence of significant spillover from the marine reserve into adjacent fished areas. Strong site fidelity coupled with negligible spillover suggests that small-scale reserves, with natural habitat boundaries to emigration, are effective in protecting localized unicornfish populations

    Retention of a transgenerational marker ((137)Barium) in tissues of adult female anemonefish and assessment of physiological stress

    No full text
    Recently it was shown that female fish injected with enriched stable isotopes maternally transmit a chemical signature to larval otoliths. Validation of this larval marking technique requires laboratory experiments to determine appropriate injection concentrations and to assess any negative effects on larval and adult condition. This study investigated the temporal profile of (137)barium assimilation and retention in tissues of adult female anemonefish Amphiprion melanopus (Pomacentridae) following intraperitoneal injection with either 2 or 4 mu g Ba-137 g(-1) body mass. Mean barium isotope ratios (Ba-138:Ba-137) in the two groups of treated fish were not significantly different from each other, but were significantly different from those in the control group up to 56 days post-injection. This pattern of Ba-137 retention was consistent across gonad, muscle, liver and bone tissues. Mean plasma cortisol concentration (an indicator of non-specific physiological stress) was not significantly different among groups and was considered to be representative of unstressed fish. Together, these results indicate that (1) A. melanopus suffer minimal physiological stress and cope well after treatment with Ba-137, (2) Ba-137 is retained in female A. melanopus for a prolonged period (at least 56 days), such that multiple clutches of offspring are likely to be marked with an isotopic signature, and (3) a lower dosage of 2 mu g Ba-137 g(-1) appears sufficient for transgenerational marking. It is concluded that Ba-137 is suitable for use as a transgenerational marker and is a powerful tool to resolve long-standing enigmas such as larval dispersal distances and the fishery benefits of marine reserves
    corecore