1 research outputs found

    Low N2_{2}O and variable CH4_{4} fluxes from tropical forest soils of the Congo Basin

    Get PDF
    Globally, tropical forests are assumed to be an important source of atmospheric nitrous oxide (N2_{2}O) and sink for methane (CH4_{4}). Yet, although the Congo Basin comprises the second largest tropical forest and is considered the most pristine large basin left on Earth, in situ N2_{2}O and CH4_{4} flux measurements are scarce. Here, we provide multi-year data derived from on-ground soil flux (n = 1558) and riverine dissolved gas concentration (n = 332) measurements spanning montane, swamp, and lowland forests. Each forest type core monitoring site was sampled at least for one hydrological year between 2016 - 2020 at a frequency of 7-14 days. We estimate a terrestrial CH4_{4} uptake (in kg CH4_{4}-C ha−1^{-1} yr−1^{-1}) for montane (−4.28) and lowland forests (−3.52) and a massive CH4_{4} release from swamp forests (non-inundated 2.68; inundated 341). All investigated forest types were a N2_{2}O source (except for inundated swamp forest) with 0.93, 1.56, 3.5, and −0.19 kg N2_{2}O-N ha−1^{-1} yr−1^{-1} for montane, lowland, non-inundated swamp, and inundated swamp forests, respectively
    corecore