25 research outputs found

    Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Translational control mediated by non-coding microRNAs (miRNAs) plays a key role in the mechanism of cellular resistance to anti-cancer drug treatment. Dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS, TS) are two of the most important targets for antifolate- and fluoropyrimidine-based chemotherapies in the past 50 years. In this study, we investigated the roles of miR-215 in the chemoresistance to DHFR inhibitor methotrexate (MTX) and TS inhibitor Tomudex (TDX).</p> <p>Results</p> <p>The protein levels of both DHFR and TS were suppressed by miR-215 without the alteration of the target mRNA transcript levels. Interestingly, despite the down-regulation of DHFR and TS proteins, ectopic expression of miR-215 resulted in a decreased sensitivity to MTX and TDX. Paradoxically, gene-specific small-interfering RNAs (siRNAs) against DHFR or TS had the opposite effect, increasing sensitivity to MTX and TDX. Further studies revealed that over-expression of miR-215 inhibited cell proliferation and triggered cell cycle arrest at G2 phase, and that this effect was accompanied by a p53-dependent up-regulation of p21. The inhibitory effect on cell proliferation was more pronounced in cell lines containing wild-type p53, but was not seen in cells transfected with siRNAs against DHFR or TS. Moreover, denticleless protein homolog (DTL), a cell cycle-regulated nuclear and centrosome protein, was confirmed to be one of the critical targets of miR-215, and knock-down of DTL by siRNA resulted in enhanced G2-arrest, p53 and p21 induction, and reduced cell proliferation. Additionally, cells subjected to siRNA against DTL exhibited increased chemoresistance to MTX and TDX. Endogenous miR-215 was elevated about 3-fold in CD133+HI/CD44+HI colon cancer stem cells that exhibit slow proliferating rate and chemoresistance compared to control bulk CD133+/CD44+ colon cancer cells.</p> <p>Conclusions</p> <p>Taken together, our results indicate that miR-215, through the suppression of DTL expression, induces a decreased cell proliferation by causing G2-arrest, thereby leading to an increase in chemoresistance to MTX and TDX. The findings of this study suggest that miR-215 may play a significant role in the mechanism of tumor chemoresistance and it may have a unique potential as a novel biomarker candidate.</p

    Prostate Cancer Stem Cell-Targeted Efficacy of a New-Generation Taxoid, SBT-1214 and Novel Polyenolic Zinc-Binding Curcuminoid, CMC2.24

    Get PDF
    Background Prostate cancer is the second leading cause of cancer death among men. Multiple evidence suggests that a population of tumor-initiating, or cancer stem cells (CSCs) is responsible for cancer development and exceptional drug resistance, representing a highly important therapeutic target. The present study evaluated CSC-specific alterations induced by new-generation taxoid SBT-1214 and a novel polyenolic zinc-binding curcuminoid, CMC2.24, in prostate CSCs. Principal Findings The CD133high/CD44high phenotype was isolated from spontaneously immortalized patient-derived PPT2 cells and highly metastatic PC3MM2 cells. Weekly treatment of the NOD/SCID mice bearing PPT2- and PC3MM3-induced tumors with the SBT-1214 led to dramatic suppression of tumor growth. Four of six PPT2 and 3 of 6 PC3MM2 tumors have shown the absence of viable cells in residual tumors. In vitro, SBT-1214 (100nM-1µM; for 72 hr) induced about 60% cell death in CD133high/CD44+/high cells cultured on collagen I in stem cell medium (in contrast, the same doses of paclitaxel increased proliferation of these cells). The cytotoxic effects were increased when SBT-1214 was combined with the CMC2.24. A stem cell-specific PCR array assay revealed that this drug combination mediated massive inhibition of multiple constitutively up-regulated stem cell-related genes, including key pluripotency transcription factors. Importantly, this drug combination induced expression of p21 and p53, which were absent in CD133high/CD44high cells. Viable cells that survived this treatment regimen were no longer able to induce secondary spheroids, exhibited significant morphological abnormalities and died in 2-5 days. Conclusions We report here that the SBT-1214 alone, or in combination with CMC2.24, possesses significant activity against prostate CD133high/CD44+/high tumor-initiating cells. This drug combination efficiently inhibits expression of the majority of stem cell-related genes and pluripotency transcription factors. In addition, it induces a previously absent expression of p21 and p53 (“gene wake-up”), which can potentially reverse drug resistance by increasing sensitivity to anti-cancer drugs

    New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumor-initiating cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing evidence suggests that the majority of tumors are organized hierarchically, comprising a population of tumor-initiating, or cancer stem cells (CSCs) responsible for tumor development, maintenance and resistance to drugs. Previously we have shown that the CD133<sup>high</sup>/CD44<sup>high </sup>fraction of colon cancer cells is different from their bulk counterparts at the functional, morphological and genomic levels. In contrast to the majority of colon cancer cells expressing moderate levels of CD133, CD44 and CD166, cells with a high combined expression of CD133 and CD44 possessed several characteristic stem cell features, including profound self-renewal capacity <it>in vivo </it>and <it>in vitro</it>, and the ability to give rise to different cell phenotypes. The present study was undertaken for two aims: a) to determine stem cell-related genomic characteristics of floating 3D multicellular spheroids induced by CD133<sup>high</sup>/CD44<sup>high </sup>colon cancer cells; and b) to evaluate CSC-specific alterations induced by new-generation taxoid SB-T-1214.</p> <p>Results</p> <p>Selected CSC phenotype was isolated from three independent invasive colon cancer cell lines, HCT116, HT29 and DLD-1. A stem cell-specific PCR array assay (<it>SA</it>Biosciences) revealed that colonospheres induced by purified CD133<sup>high</sup>/CD44<sup>high </sup>expressing cells display profound up-regulation of stem cell-related genes in comparison with their bulk counterparts. The FACS analysis has shown that the 3D colonospheres contained some minority cell populations with high levels of expression of Oct4, Sox2, Nanog and c-Myc, which are essential for stem cell pluripotency and self-renewal. Single administration of the SB-T-1214 at concentration 100 nM-1 μM for 48 hr not only induced growth inhibition and apoptotic cell death in these three types of colon cancer spheroids in 3D culture, but also mediated massive inhibition of the stem cell-related genes and significant down-regulation of the pluripotency gene expression. PCR array and FACS data were confirmed with western blotting. Importantly, viable cells that survived this treatment regimen were no longer able to induce secondary floating spheroids and exhibited significant morphological abnormalities.</p> <p>Conclusions</p> <p>We report here that a new-generation taxoid SB-T-1214 possesses significant activity against colon cancer spheroids induced by and enriched with drug resistant tumorigenic CD133<sup>high</sup>/CD44<sup>high </sup>cells and efficiently inhibited expression of the majority of stem cell-related genes. Our data indicates that the previously observed long-term efficacy of SB-T-1214 against drug resistant colon tumors <it>in vivo </it>may be explained by the down-regulation of multiple stem cell-related genes in the tumorigenic cell population, in addition to its known efficacy as a mitotic poison against proliferating cancer cells.</p
    corecore