28 research outputs found

    Diagnostic amyloid proteomics: experience of the UK National Amyloidosis Centre

    Get PDF
    Systemic amyloidosis is a serious disease which is caused when normal circulating proteins misfold and aggregate extracellularly as insoluble fibrillary deposits throughout the body. This commonly results in cardiac, renal and neurological damage. The tissue target, progression and outcome of the disease depends on the type of protein forming the fibril deposit, and its correct identification is central to determining therapy. Proteomics is now used routinely in our centre to type amyloid; over the past 7 years we have examined over 2000 clinical samples. Proteomics results are linked directly to our patient database using a simple algorithm to automatically highlight the most likely amyloidogenic protein. Whilst the approach has proved very successful, we have encountered a number of challenges, including poor sample recovery, limited enzymatic digestion, the presence of multiple amyloidogenic proteins and the identification of pathogenic variants. Our proteomics procedures and approaches to resolving difficult issues are outlined

    Plasmin activity promotes amyloid deposition in a transgenic model of human transthyretin amyloidosis

    Get PDF
    Cardiac ATTR amyloidosis, a serious but much under-diagnosed form of cardiomyopathy, is caused by deposition of amyloid fibrils derived from the plasma protein transthyretin (TTR), but its pathogenesis is poorly understood and informative in vivo models have proved elusive. Here we report the generation of a mouse model of cardiac ATTR amyloidosis with transgenic expression of human TTRS52P. The model is characterised by substantial ATTR amyloid deposits in the heart and tongue. The amyloid fibrils contain both full-length human TTR protomers and the residue 49-127 cleavage fragment which are present in ATTR amyloidosis patients. Urokinase-type plasminogen activator (uPA) and plasmin are abundant within the cardiac and lingual amyloid deposits, which contain marked serine protease activity; knockout of α2-antiplasmin, the physiological inhibitor of plasmin, enhances amyloid formation. Together, these findings indicate that cardiac ATTR amyloid deposition involves local uPA-mediated generation of plasmin and cleavage of TTR, consistent with the previously described mechano-enzymatic hypothesis for cardiac ATTR amyloid formation. This experimental model of ATTR cardiomyopathy has potential to allow further investigations of the factors that influence human ATTR amyloid deposition and the development of new treatments

    Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis

    Get PDF
    Aims: Congo red staining of an endomyocardial biopsy is the diagnostic gold-standard in suspected cardiac amyloidosis (CA), but the procedure is associated with the risk, albeit small, of serious complications, and delay in diagnosis due to the requirement for technical expertise. In contrast, abdominal fat pad fine needle aspiration (FPFNA) is a simple, safe and well-established procedure in systemic amyloidosis, but its diagnostic sensitivity in patients with suspected CA remains unclear. Methods and results: We assessed the diagnostic sensitivity of FPFNA in 600 consecutive patients diagnosed with CA [216 AL amyloidosis, 113 hereditary transthyretin (ATTRm), and 271 wild-type transthyretin (ATTRwt) amyloidosis] at our Centre. Amyloid was detected on Congo red staining of FPFNAs in 181/216 (84%) patients with cardiac AL amyloidosis, including 100, 97, and 78% of those with a large, moderate, and small whole-body amyloid burden, respectively, as assessed by serum amyloid P (SAP) component scintigraphy (P < 0.001); the deposits were successfully typed as AL by immunohistochemistry in 102/216 (47%) cases. Amyloid was detected in FPFNAs of 51/113 (45%) patients with ATTRm CA, and only 42/271 (15%) cases with ATTRwt CA. Conclusions: FPFNA has reasonable diagnostic sensitivity in cardiac AL amyloidosis, particularly in patients with a large whole-body amyloid burden. Although the diagnostic sensitivity of FPFNA is substantially lower in transthyretin CA, particularly ATTRwt, it may nevertheless sometimes obviate the need for endomyocardial biopsy

    Clinical ApoA-IV amyloid is associated with fibrillogenic signal sequence

    Get PDF
    Apolipoprotein A-IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA-IV amyloidosis was identified in 16 patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA-IV signal sequence residues (p.18-43 to p.20-43) in 16/24 trypsin-digested amyloid deposits but in only 1/266 non-ApoA-IV amyloid samples examined. These additional signal residues were also detected in the cardiac sample from the Swedish patient in which ApoA-IV amyloid was first described, and in plasma from a single cardiac ApoA-IV amyloidosis patient. The most common signal-containing peptide observed in ApoA-IV amyloid, p.20-43, and to a far lesser extent the N-terminal peptide, p.21-43, were fibrillogenic in vitro at physiological pH, generating Congo red-positive fibrils. The addition of a single signal-derived alanine residue to the N-terminus has resulted in markedly increased fibrillogenesis. If this effect translates to the mature circulating protein in vivo, then the presence of signal may result in preferential deposition as amyloid, perhaps acting as seed for the main circulating native form of the protein; it may also influence other ApoA-IV-associated pathologies. \ua9 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland

    Clinical ApoA-IV amyloid is associated with fibrillogenic signal sequence

    Get PDF
    Apolipoprotein A-IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA-IV amyloidosis was identified in sixteen patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA-IV signal sequence residues (p.18–43 to p.20–43) in 16/24 trypsin-digested amyloid deposits, but in only 1/266 non-ApoA-IV amyloid samples examined. These additional signal residues were also detected in the cardiac sample from the Swedish patient in which ApoA-IV amyloid was first described, and in plasma from a single cardiac ApoA-IV amyloidosis patient. The most common signal-containing peptide observed in ApoA-IV amyloid, p.20–43 and to far lesser extent the N-terminal peptide, p.21–43 were fibrillogenic in vitro at physiological pH generating Congo red positive fibrils. The addition of a single signal-derived alanine residue to the N-terminus has resulted in markedly increased fibrillogenesis. If this effect translates to the mature circulating protein in vivo, then the presence of signal may result in preferential deposition as amyloid, perhaps acting as seed for the main circulating native form of the protein; it may also influence other ApoA-IV associated pathologies

    Diagnostic amyloid proteomics: Experience of the UK National Amyloidosis Centre

    No full text
    Systemic amyloidosis is a serious disease which is caused when normal circulating proteins misfold and aggregate extracellularly as insoluble fibrillary deposits throughout the body. This commonly results in cardiac, renal and neurological damage. The tissue target, progression and outcome of the disease depends on the type of protein forming the fibril deposit, and its correct identification is central to determining therapy. Proteomics is now used routinely in our centre to type amyloid; over the past 7 years we have examined over 2000 clinical samples. Proteomics results are linked directly to our patient database using a simple algorithm to automatically highlight the most likely amyloidogenic protein. Whilst the approach has proved very successful, we have encountered a number of challenges, including poor sample recovery, limited enzymatic digestion, the presence of multiple amyloidogenic proteins and the identification of pathogenic variants. Our proteomics procedures and approaches to resolving difficult issues are outlined

    Plasmin activity promotes amyloid deposition in a transgenic model of human transthyretin amyloidosis

    No full text
    Cardiac ATTR amyloidosis, a serious but much under-diagnosed form of cardiomyopathy, is caused by deposition of amyloid fibrils derived from the plasma protein transthyretin (TTR), but its pathogenesis is poorly understood and informative in vivo models have proved elusive. Here we report the generation of a mouse model of cardiac ATTR amyloidosis with transgenic expression of human TTRS52P. The model is characterised by substantial ATTR amyloid deposits in the heart and tongue. The amyloid fibrils contain both full-length human TTR protomers and the residue 49-127 cleavage fragment which are present in ATTR amyloidosis patients. Urokinase-type plasminogen activator (uPA) and plasmin are abundant within the cardiac and lingual amyloid deposits, which contain marked serine protease activity; knockout of α2-antiplasmin, the physiological inhibitor of plasmin, enhances amyloid formation. Together, these findings indicate that cardiac ATTR amyloid deposition involves local uPA-mediated generation of plasmin and cleavage of TTR, consistent with the previously described mechano-enzymatic hypothesis for cardiac ATTR amyloid formation. This experimental model of ATTR cardiomyopathy has potential to allow further investigations of the factors that influence human ATTR amyloid deposition and the development of new treatments
    corecore