213 research outputs found

    Condition-Adaptive Graph Convolution Learning for Skeleton-Based Gait Recognition

    Full text link
    Graph convolutional networks have been widely applied in skeleton-based gait recognition. A key challenge in this task is to distinguish the individual walking styles of different subjects across various views. Existing state-of-the-art methods employ uniform convolutions to extract features from diverse sequences and ignore the effects of viewpoint changes. To overcome these limitations, we propose a condition-adaptive graph (CAG) convolution network that can dynamically adapt to the specific attributes of each skeleton sequence and the corresponding view angle. In contrast to using fixed weights for all joints and sequences, we introduce a joint-specific filter learning (JSFL) module in the CAG method, which produces sequence-adaptive filters at the joint level. The adaptive filters capture fine-grained patterns that are unique to each joint, enabling the extraction of diverse spatial-temporal information about body parts. Additionally, we design a view-adaptive topology learning (VATL) module that generates adaptive graph topologies. These graph topologies are used to correlate the joints adaptively according to the specific view conditions. Thus, CAG can simultaneously adjust to various walking styles and viewpoints. Experiments on the two most widely used datasets (i.e., CASIA-B and OU-MVLP) show that CAG surpasses all previous skeleton-based methods. Moreover, the recognition performance can be enhanced by simply combining CAG with appearance-based methods, demonstrating the ability of CAG to provide useful complementary information.The source code will be available at https://github.com/OliverHxh/CAG.Comment: Accepted by TIP journa

    Context-Sensitive Temporal Feature Learning for Gait Recognition

    Full text link
    Although gait recognition has drawn increasing research attention recently, it remains challenging to learn discriminative temporal representation, since the silhouette differences are quite subtle in spatial domain. Inspired by the observation that human can distinguish gaits of different subjects by adaptively focusing on temporal clips with different time scales, we propose a context-sensitive temporal feature learning (CSTL) network for gait recognition. CSTL produces temporal features in three scales, and adaptively aggregates them according to the contextual information from local and global perspectives. Specifically, CSTL contains an adaptive temporal aggregation module that subsequently performs local relation modeling and global relation modeling to fuse the multi-scale features. Besides, in order to remedy the spatial feature corruption caused by temporal operations, CSTL incorporates a salient spatial feature learning (SSFL) module to select groups of discriminative spatial features. Particularly, we utilize transformers to implement the global relation modeling and the SSFL module. To the best of our knowledge, this is the first work that adopts transformer in gait recognition. Extensive experiments conducted on three datasets demonstrate the state-of-the-art performance. Concretely, we achieve rank-1 accuracies of 98.7%, 96.2% and 88.7% under normal-walking, bag-carrying and coat-wearing conditions on CASIA-B, 97.5% on OU-MVLP and 50.6% on GREW.Comment: Submitted to TPAM

    Non-covalent interactions in electrochemical reactions and implications in clean energy applications

    Get PDF
    Understanding and controlling non-covalent interactions associated with solvent molecules and redox-inactive ions provide new opportunities to enhance the reaction entropy changes and reaction kinetics of metal redox centers, which can increase the thermodynamic efficiency of energy conversion and storage devices. Here, we report systematic changes in the redox entropy of one-electron transfer reactions including [Fe(CN)6]3-/4-, [Fe(H2O)6]3+/2+and [Ag(H2O)4]+/0induced by the addition of redox inactive ions, where approximately twenty different known structure making/breaking ions were employed. The measured reaction entropy changes of these redox couples were found to increase linearly with higher concentration and greater structural entropy (having greater structure breaking tendency) for inactive ions with opposite charge to the redox centers. The trend could be attributed to the altered solvation shells of oxidized and reduced redox active species due to non-covalent interactions among redox centers, inactive ions and water molecules, which was supported by Raman spectroscopy. Not only were these non-covalent interactions shown to increase reaction entropy, but they were also found to systematically alter the redox kinetics, where increasing redox reaction energy changes associated with the presence of water structure breaking cations were correlated linearly with the greater exchange current density of [Fe(CN)6]3-/4-.United States. Department of Energy. Office of Basic Energy Science (Award Number DE-SC0001299/DE-FG02-09ER46577)Hong Kong (China). Innovation and Technology Commission (Project No. ITS/ 020/16FP)United States. Department of Energy (Contract No. DE-AC02-5CH11231

    Detecting HI Galaxies with Deep Neural Networks in the Presence of Radio Frequency Interference

    Full text link
    In neutral hydrogen (HI) galaxy survey, a significant challenge is to identify and extract the HI galaxy signal from observational data contaminated by radio frequency interference (RFI). For a drift-scan survey, or more generally a survey of a spatially continuous region, in the time-ordered spectral data, the HI galaxies and RFI all appear as regions which extend an area in the time-frequency waterfall plot, so the extraction of the HI galaxies and RFI from such data can be regarded as an image segmentation problem, and machine learning methods can be applied to solve such problems. In this study, we develop a method to effectively detect and extract signals of HI galaxies based on a Mask R-CNN network combined with the PointRend method. By simulating FAST-observed galaxy signals and potential RFI impacts, we created a realistic data set for the training and testing of our neural network. We compared five different architectures and selected the best-performing one. This architecture successfully performs instance segmentation of HI galaxy signals in the RFI-contaminated time-ordered data (TOD), achieving a precision of 98.64% and a recall of 93.59%.Comment: 17 pages, 9 figures, 1 tables. Accepted for publication in RA

    A Dyad Model of Calling Behaviour with Tie Strength Dynamics

    Get PDF
    This paper investigates the dynamic relation between callers' social ties and their wireless phone service consumption. We construct a large pair-level panel dataset with information on the number of each pair's common contacts, calling activities, prices, and each caller's characteristics over a one-year time period. We estimate a dynamic model that encapsulates the evolving relationship between each pair of consumers. We find the amount of communications between a pair of consumers increases with the strength of their tie, which is higher when these two consumers share more common contacts. Our results support the reciprocity rule in telephone calls, i.e. when individual A initiates more (less) phone calls to individual B in one month, their social tie will be strengthened (weakened) and individual B will make more (less) calls to individual A in the subsequent months. We demonstrate the implications of our results in evaluating the return of temporary price promotions and designing price plans. Our results underscore the importance of incorporating social network characteristics in the study of telecommunications markets
    • …
    corecore