92 research outputs found

    The effects of psychiatric disorders on the risk of chronic heart failure: a univariable and multivariable Mendelian randomization study

    Get PDF
    BackgroundSubstantial evidence suggests an association between psychiatric disorders and chronic heart failure. However, further investigation is needed to confirm the causal relationship between these psychiatric disorders and chronic heart failure. To address this, we evaluated the potential effects of five psychiatric disorders on chronic heart failure using two-sample Mendelian Randomization (MR).MethodsWe selected single nucleotide polymorphisms (SNPs) associated with chronic heart failure and five psychiatric disorders (Attention-Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), Major Depression, Bipolar Disorder and Schizophrenia (SCZ)). Univariable (UVMR) and multivariable two-sample Mendelian Randomization (MVMR) were employed to assess causality between these conditions. Ever smoked and alcohol consumption were controlled for mediating effects in the multivariable MR. The inverse variance weighting (IVW) and Wald ratio estimator methods served as the primary analytical methods for estimating potential causal effects. MR-Egger and weighted median analyses were also conducted to validate the results. Sensitivity analyses included the funnel plot, leave-one-out, and MR-Egger intercept tests. Additionally, potential mediators were investigated through risk factor analyses.ResultsGenetically predicted heart failure was significantly associated with ADHD (odds ratio (OR), 1.12; 95% CI, 1.04–1.20; p = 0.001), ASD (OR, 1.29; 95% CI, 1.07–1.56; p = 0.008), bipolar disorder (OR, 0.89; 95% CI, 0.83–0.96; p = 0.001), major depression (OR, 1.15; 95% CI, 1.03–1.29; p = 0.015), SCZ (OR, 1.04; 95% CI, 1.00–1.07; p = 0.024). Several risk factors for heart failure are implicated in the above cause-and-effect relationship, including ever smoked and alcohol consumption.ConclusionOur study demonstrated ADHD, ASD, SCZ and major depression may have a causal relationship with an increased risk of heart failure. In contrast, bipolar disorder was associated with a reduced risk of heart failure, which could potentially be mediated by ever smoked and alcohol consumption. Therefore, prevention strategies for heart failure should also incorporate mental health considerations, and vice versa

    Study of Storage Ring Free-Electron Laser Using Experimental and Simulation Approaches

    No full text
    <p>The Duke electron storage ring, first commissioned in November of 1994, has been developed as a dedicated driver for storage ring free-electron lasers (SRFELs) operating in a wide wavelength range from infrared, to visible, to ultraviolet (UV) and vacuum ultraviolet (VUV). The storage ring has a long straight section for various insertion devices and can be operated in a wide energy range (0.25 GeV to 1.15 GeV).</p><p>Commissioned in 1995, the first free-electron laser (FEL) on the Duke storage ring was the OK-4 FEL, an optical klystron with two planar undulators sandwiching a buncher magnet. In 2005, the OK-5 FEL with two helical undulators was commissioned. Operating four undulators -- two OK-4 and two OK-5 undulators, the world's first distributed optical klystron FEL was brought to operation in 2005. Via Compton scattering of FEL photons and electrons in the storage ring, the Duke FEL drives the world's most powerful, nearly monochromatic, and polarized Compton</p><p>gamma-ray source, the High Intensity Gamma-ray Source (HI&#947;S). Today, a variety of configurations of the storage ring FELs at Duke have been used in a wide range of research areas from nuclear physics to biophysics, from chemical and medical research to industrial applications.</p><p>The capability of accurately measuring the storage ring electron beam energy spread is crucial for understanding the longitudinal beam dynamics and the dynamics of the storage ring FEL. In this dissertation, we have successfully developed a noninvasive, versatile, and accurate method to measure the energy spread using optical klystron radiation. Novel numerical methods based upon the Gauss-Hermite expansion have been developed to treat both spectral broadening and modulation on an equal footing. Through properly configuring the optical klystron, this energy spread measurement method has a large dynamic range. In addition, a model-based scheme has been developed for correcting the electron beam emittance related inhomogeneous spectral broadening effect, to further enhance the accuracy of measuring the electron beam energy spread. </p><p>Taking advantage of the direct measurement method of the electron beam energy spread, we have developed another novel technique to simultaneously measure the FEL power, electron beam energy spread, and other beam parameters. This allowed us to study the FEL power in a systematic manner for the first time. Based on the experimental findings and results of the theoretical predictions, we have proposed a compact formula to predict the FEL power using only the knowledge of electron</p><p>beam current, beam energy, and bunch length.</p><p>As part of the dissertation work, we have developed a self-consistent numerical model to study the storage ring FEL. The simulation program models the electron beam propagation along the storage ring, multi-turn FEL interaction in the undulators, gradual intra-cavity optical power buildup, etc. This simulation code captures the main features of a storage ring FEL at different time and space scales. The simulated FEL gain has been benchmarked against measured gain and calculated</p><p>gain with good agreement. The simulation package can provide comprehensive information about the FEL gain, optical pulse growth, electron beam properties, etc. In the near future, we plan to further improve the simulation model, by including additional physics effects such as microwave instability, to make it a more useful tool for FEL research.</p>Dissertatio

    Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

    Get PDF
    The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME)—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient

    The Olig family affects central nervous system development and disease

    Full text link
    exterior, detail views of windows of the power plant (top) and factory (bottom

    Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study

    No full text
    Background. Transcutaneous auricular vagus nerve stimulation (taVNS) is regarded as a potential method for recovery in stroke. The effectiveness of taVNS in acute and subacute stroke should be further discussed as previously, only a few small-scale trials have focused on chronic stroke patients. The objective of this study is to investigate the effect and safety of taVNS on upper limb motor function in subacute ischemic stroke patients. Methods. Twenty-one subacute ischemia stroke patients with single upper limb motor function impairment were enrolled and randomly assigned to conventional rehabilitation training with real or sham taVNS, delivered for 15 consecutive days. Electrodes were fixed to the cymba conchae of the left ear with or without electrical stimulation. Conventional rehabilitation training was performed immediately after the end of real or sham taVNS by the same therapists. Baseline assessments were performed on day 0 of enrollment, and posttreatment evaluations were performed at 15 days, 4 weeks, and 12 weeks after the first intervention. The assessment included the upper limb Fugl-Meyer assessment (FMA-U), the Wolf motor function test (WMFT), the Functional Independence Measurement (FIM), and Brunnstrom stage. Heart rate (HR) and blood pressure (BP) were measured before and after each taVNS intervention. At the same time, any adverse effects were observed during the procedure. Outcomes were assessed by a blind evaluator. Results. There were no significant differences in FMA-U, WMFT, FIM, and Brunnstrom scores between the two groups at baseline (P>0.05). At the endpoint, the FMA-U, WMFT, and FIM scores were significantly higher than before treatment (P<0.05), and there was a significantly greater improvement of those measurements in taVNS group compared with sham-taVNS group (P<0.05). Significant improvements in FMA-U score were found between groups at follow-up. Only one case of skin redness occurred during the study. Conclusions. This study revealed that taVNS appeared to be beneficial to the recovery of upper limb motor function in subacute ischemia stroke patients without obvious adverse effects. Trial registration. This trial is registered with ChiCTR1800019635 on 20 November 2018 (http://www.chictr.org.cn/showproj.aspx?proj=32961)

    Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    No full text
    Inorganic solidified foam (ISF) is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM). The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation

    Influence of an imperfect energy profile on a seeded free electron laser performance

    No full text
    A single-pass high-gain x-ray free electron laser (FEL) calls for a high quality electron bunch. In particular, for a seeded FEL amplifier and for a harmonic generation FEL, the electron bunch initial energy profile uniformity is crucial for generating an FEL with a narrow bandwidth. After the acceleration, compression, and transportation, the electron bunch energy profile entering the undulator can acquire temporal nonuniformity. We study the influence of the electron bunch initial energy profile nonuniformity on the FEL performance. Intrinsically, for a harmonic generation FEL, the harmonic generation FEL in the final radiator starts with an electron bunch having energy modulation acquired in the previous stages, due to the FEL interaction at those FEL wavelengths and their harmonics. The influence of this electron bunch energy nonuniformity on the harmonic generation FEL in the final radiator is then studied

    Effects of Electromyography Bridge on Upper Limb Motor Functions in Stroke Participants: An Exploratory Randomized Controlled Trial

    No full text
    The electromyography bridge (EMGB) plays an important role in promoting the recovery of wrist joint function in stroke patients. We investigated the effects of the EMGB on promoting the recovery of upper limb function in hemiplegia. Twenty-four stroke patients with wrist dorsal extension dysfunction were recruited. Participants were randomized to undergo EMGB treatment or neuromuscular electrical stimulation (NMES). Treatments to wrist extensors were conducted for 25 min, twice a day, 5 days per week, for 1 month. Outcome measures: active range of motion (AROM) of wrist dorsal extension; Fugl-Meyer assessment for upper extremity (FMA-UE); Barthel index (BI); and muscle strength of wrist extensors. After interventions, patients in the NMES group had significantly greater improvement in the AROM of wrist dorsal extension at the 4th week and 1st month follow-up (p &lt; 0.05). However, patients in the EMGB group had a statistically significant increase in AROM only at the follow-up assessment. No significant differences were observed in the AROM between the EMGB group and the NMES group (p &gt; 0.05). For secondary outcomes in the EMGB group, compared to baseline measurements, FMA-UE, BI, extensor carpi radialis and extensor carpi ulnaris muscle strength were significantly different as early as the 4th week (p &lt; 0.05). The muscle strength of the extensor digitorum communis muscle showed significant differences at the follow-up (p &lt; 0.05). There were no statistically significant differences between patients in the two groups in any of the parameters evaluated (p &gt; 0.05). The combination of EMGB or NMES with conventional treatment had similar effects on the improvement of the hemiplegic upper limb as assessed by wrist dorsal extension, FMA-UE, and activities of daily living. The improvement in both groups was maintained until 1 month after the intervention

    Characterization and Expression Analysis of the UDP Glycosyltransferase Family in Pomegranate (<i>Punica granatum</i> L.)

    No full text
    UDP glycosyltransferases (UGTs) play an indispensable role in regulating signaling pathways and intracellular homeostasis in plants by catalyzing the glycosylation of metabolites. To date, the molecular characteristics and potential biological functions of the UGT gene family in pomegranate (Punica granatum L.) remain elusive. In this study, a total of 120 PgUGT genes were identified in the pomegranate genome. Phylogenetic analysis revealed that these PgUGTs were clustered into 15 groups: 13 conserved groups (A–J and L–N) and two newly discovered groups (P and R). Structural analysis showed that most members in the same evolutionary branch shared similar motifs and gene structures. Gene duplication analysis demonstrated that tandem duplication and fragment duplication were the primary driving force for the expansion of the PgUGT family. Expression analysis based on RNA-seq data indicated that PgUGTs exhibited various expression profiles in different pomegranate tissues. We further analyzed the expression patterns of the PgUGTs of groups E and L in the seed coat of the hard-seeded cultivar ‘Dabenzi’ and the soft-seeded cultivar ‘Tunisia’ at different developmental stages. There were eight PgUGTs with high expression levels in the seed coat of both cultivars: PgUGTE10 was highly expressed in inner and outer seed coats; PgUGTE20, PgUGTE21, PgUGTL6, PgUGTL11, and PgUGTL12 were mainly expressed in the inner seed coat; and PgUGTE12 and PgUGTL13 were mainly expressed in the outer seed coat. Interestingly, the relative expression levels of PgUGTE10 and PgUGTL11 in ‘Tunisia’ were higher than in ‘Dabenzi’. In the seedlings, quantitative real-time PCR analysis showed that the expression level of PgUGTE10 was induced by brassinolide treatment, while the expression of PgUGTL11 was up-regulated both by indole-3-acetic acid and the brassinolide treatment. In addition, the expressions of PgUGTE10 and PgUGTL11 were highly correlated with the expression of genes involved in hormone signaling and lignin biosynthesis pathways. These results suggested that PgUGTE10 and PgUGTL11 are potential candidate genes involved in seed hardness development by catalyzing the glycosylation of specific substrates
    • …
    corecore