17 research outputs found

    SARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivity

    Get PDF
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.The EDCTP2 program of the European Unionā€™s Horizon 2020 program, Wellcome Centre for Infectious Diseases Research in Africa, the SA-MRC, MRC UK, NRF, the Lily and Ernst Hausmann Trust, the South African Research Chairs Initiative of the Department of Science and Innovation and National Research Foundation of South Africa, the SA Medical Research Council SHIP program, the Center for the AIDS Program of Research (CAPRISA) and an Lā€™Oreal/UNESCO Women in Science South Africa Young Talents award.http://www.cell.com/cell-host-microbe/homeam2023ImmunologyInternal Medicin

    Shared N417-dependent epitope on the SARS-CoV-2 Omicron, Beta, and Delta Plus variants

    Get PDF
    As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE : The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.The South African Research Chairs Initiative of the Department of Science and Innovation, the National Research Foundation of South Africa, the SA Medical Research Council SHIP program and the Bill and Melinda Gates Foundation, through the Global Immunology and Immune Sequencing for Epidemic Response (GIISER) program.https://journals.asm.org/journal/jvihj2023ImmunologyInternal Medicin

    Risk of End-Stage Renal Disease in HIV-Positive Potential Live Kidney Donors

    Get PDF
    New federal regulations allow HIV-positive individuals to be live kidney donors; however, potential candidacy for donation is poorly understood given the increased risk of end-stage renal disease (ESRD) associated with HIV infection. To better understand this risk, we compared the incidence of ESRD among 41 968 HIV-positive participants of North America AIDS Cohort Collaboration on Research and Design followed for a median of 5 years with the incidence of ESRD among comparable HIV-negative participants of National Health and Nutrition Examination III followed for a median of 14 years. We used risk associations from multivariable Cox proportional hazards regression to derive cumulative incidence estimates for selected HIV-positive scenarios (no history of diabetes, hypertension, AIDS, or hepatitis C virus coinfection) and compared these estimates with those from similarly selected HIV-negative scenarios. For 40-year-old HIV-positive individuals with health characteristics that were similar to those of age-matched kidney donors, viral load <400 copies/mL, and CD4+ count ā‰„500 cells/Ī¼L, the 9-year cumulative incidence of ESRD was higher than that of their HIV-negative peers, yet still low: 2.5 versus 1.1 per 10 000 among white women, 3.0 versus 1.3 per 10 000 among white men, 13.2 versus 3.6 per 10 000 among black women, and 15.8 versus 4.4 per 10 000 among black men. HIV-positive individuals with no comorbidities and well-controlled disease may be considered low-risk kidney donor candidates

    Ad26.COV2.S breakthrough infections induce high titers of neutralizing antibodies against Omicron and other SARS-CoV-2 variants of concern

    Get PDF
    The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralizationresistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.The South African Medical Research Council, the South African Research Chairs Initiative of the Department of Science and Innovation; the National Research Foundation of South Africa, the EDCTP2 program of the European Unionā€™s Horizon 2020 program, the Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), which is supported by core funding from the Wellcome Trust and the Poliomyelitis Research Foundation, MRC UK, NRF, the Lily and Ernst Hausmann Trust and Lā€™Oreal/Unesco Women in Science South Africa Young Talents awardee.http://www.cell.com/cell-host-microbe/homeImmunologyInternal Medicin

    Antibody-dependent cellular cytotoxicity against SARS-CoV-2 Omicron sub-lineages is reduced in convalescent sera regardless of infecting variant

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4 and BA.5 variants caused major waves of infections. Here, we assess the sensitivity of BA.4 to binding, neutralization, and antibodydependent cellular cytotoxicity (ADCC) potential, measured by FcgRIIIa signaling, in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high-level neutralization resistance regardless of the infecting variant. However, BTIs retain activity against BA.4, albeit at reduced titers. BA.4 sensitivity to ADCC is reduced compared with other variants but with smaller fold losses compared with neutralization and similar patterns of cross-reactivity. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infection, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC potential against BA.4 is reduced, residual activity may contribute to observed protection from severe disease.The South African Research Chairs Initiative of the Department of Science and Innovation and National Research Foundation of South Africa, the South African Medical Research Council SHIP program, the European Union-Africa Concerted Action on SAR-CoV-2 Virus Variant and Immunological Surveillance (CoVICIS) consortium, and the Centre for the AIDS Programme of Research in South Africa (CAPRISA), the Bill and Melinda Gates Foundation through the Global Immunology and Immune Sequencing for Epidemic Response (GIISER) program.https://www.cell.com/cell-reports-medicine/homeam2024ImmunologyInternal MedicineSDG-03:Good heatlh and well-bein

    The Majorana project

    Get PDF
    Building a 0Ī½Ī² Ī² experiment with the ability to probe neutrino mass in the inverted hierarchy region requires the combination of a large detector mass sensitive to 0Ī½Ī² Ī², on the order of 1-tonne, and unprecedented background levels, on the order of or less than 1 count per year in the 0Ī½Ī² Ī² signal region. The Majorana Collaboration proposes a design based on using high-purity enriched 76Ge crystals deployed in ultra- low background electroformed Cu cryostats and using modern analysis techniques that should be capable of reaching the required sensitivity while also being scalable to a 1- tonne size. To demonstrate feasibility, the collaboration plans to construct a prototype system, the Majorana Demonstrator, consisting of 30 kg of 86% enriched 76Ge detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to deploy and evaluate two different Ge detector technologies, one based on a p-type configuration and the other on n-type

    Search for Neutrinoless Double- Ī² Decay in Ge 76 with the Majorana Demonstrator

    Get PDF
    The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-Ī² decay in Ge76. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in Ge76) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at QĪ²Ī² and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9Ɨ1025 yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0-2.5+3.1 counts/(FWHM t yr)
    corecore