38 research outputs found
Neurospora COP9 Signalosome Integrity Plays Major Roles for Hyphal Growth, Conidial Development, and Circadian Function
The COP9 signalosome (CSN) is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EXnHXHX10D) of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCFFWD-1 complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ) in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa
Trends in Immunization Completion and Disparities in the Context of Health Reforms: The case study of Tanzania
\ud
Of global concern is the decline in under five children mortality which has reversed in some countries in sub Saharan Africa (SSA) since the early 1990 s which could be due to disparities in access to preventive services including immunization. This paper is aimed at determining the trend in disparities in completion of immunization using Tanzania Demographic and Health Surveys (DHS). DHS studies randomly selected representative households from all regions in Tanzania since 1980 s, is repeated every five years in the same enumeration areas. The last three data sets (1990, 1996 and 2004) were downloaded and analyzed using STATA 9.0. The analysis included all children of between 12-23 months who would have completed all vaccinations required at 12 months. Across the time periods 1990, 1996 to 2004/05 the percentage of children completing vaccination was similar (71.0% in 1990, 72.7% in 1996 and 72.3% in 2005). There was no disparity in completion of immunization with wealth strata in 1990 and 1996 (p > 0.05) but not 2004. In 2004/05 there was marked disparity as most poor experienced significant decline in immunization completion while the least poor had significant increase (p < 0.001). All three periods children from households whose head had low education were less likely to complete immunization (p < 0.01). Equity that existed in 1990 and more pronounced in 1996 regressed to inequity in 2005, thus though at national level immunization coverage did not change, but at sub-group there was significant disparity associated with the changing contexts and reforms. To address sub-group disparities in immunization it is recommended to adopt strategies focused at governance and health system to reach all population groups and most poor.\u
Lack of Cul4b, an E3 Ubiquitin Ligase Component, Leads to Embryonic Lethality and Abnormal Placental Development
Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse
CSN-mediated deneddylation differentially modulates Ci155 proteolysis to promote Hedgehog signalling responses
The Hedgehog (Hh) morphogen directs distinct cell responses according to its distinct signalling levels. Hh signalling stabilizes transcription factor cubitus interruptus (Ci) by prohibiting SCFSlimb-dependent ubiquitylation and proteolysis of Ci. How graded Hh signalling confers differential SCFSlimb-mediated Ci proteolysis in responding cells remains unclear. Here, we show that in COP9 signalosome (CSN) mutants, in which deneddylation of SCFSlimb is inactivated, Ci is destabilized in low-to-intermediate Hh signalling cells. As a consequence, expression of the low-threshold Hh target gene dpp is disrupted, highlighting the critical role of CSN deneddylation on low-to-intermediate Hh signalling response. The status of Ci phosphorylation and the level of E1 ubiquitin-activating enzyme are tightly coupled to this CSN regulation. We propose that the affinity of substrate–E3 interaction, ligase activity and E1 activity are three major determinants for substrate ubiquitylation and thereby substrate degradation in vivo
Arabidopsis CULLIN3 Genes Regulate Primary Root Growth and Patterning by Ethylene-Dependent and -Independent Mechanisms
CULLIN3 (CUL3) together with BTB-domain proteins form a class of Cullin-RING ubiquitin ligases (called CRL3s) that control the rapid and selective degradation of important regulatory proteins in all eukaryotes. Here, we report that in the model plant Arabidopsis thaliana, CUL3 regulates plant growth and development, not only during embryogenesis but also at post-embryonic stages. First, we show that CUL3 modulates the emission of ethylene, a gaseous plant hormone that is an important growth regulator. A CUL3 hypomorphic mutant accumulates ACS5, the rate-limiting enzyme in ethylene biosynthesis and as a consequence exhibits a constitutive ethylene response. Second, we provide evidence that CUL3 regulates primary root growth by a novel ethylene-dependant pathway. In particular, we show that CUL3 knockdown inhibits primary root growth by reducing root meristem size and cell number. This phenotype is suppressed by ethylene-insensitive or resistant mutations. Finally, we identify a function of CUL3 in distal root patterning, by a mechanism that is independent of ethylene. Thus, our work highlights that CUL3 is essential for the normal division and organisation of the root stem cell niche and columella root cap cells
Pathogenic Bacteria Target NEDD8-Conjugated Cullins to Hijack Host-Cell Signaling Pathways
The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria
CSN-and CAND1-dependent remodelling of the budding yeast SCF complex
International audienceCullin-RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1-Cdc53-F-box) Cullin-RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation-deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange