63 research outputs found
Bayesian Estimation for Continuous-Time Sparse Stochastic Processes
We consider continuous-time sparse stochastic processes from which we have
only a finite number of noisy/noiseless samples. Our goal is to estimate the
noiseless samples (denoising) and the signal in-between (interpolation
problem).
By relying on tools from the theory of splines, we derive the joint a priori
distribution of the samples and show how this probability density function can
be factorized. The factorization enables us to tractably implement the maximum
a posteriori and minimum mean-square error (MMSE) criteria as two statistical
approaches for estimating the unknowns. We compare the derived statistical
methods with well-known techniques for the recovery of sparse signals, such as
the norm and Log (- relaxation) regularization
methods. The simulation results show that, under certain conditions, the
performance of the regularization techniques can be very close to that of the
MMSE estimator.Comment: To appear in IEEE TS
- …