2 research outputs found

    The Missing Indicator Method: From Low to High Dimensions

    Full text link
    Missing data is common in applied data science, particularly for tabular data sets found in healthcare, social sciences, and natural sciences. Most supervised learning methods only work on complete data, thus requiring preprocessing such as missing value imputation to work on incomplete data sets. However, imputation alone does not encode useful information about the missing values themselves. For data sets with informative missing patterns, the Missing Indicator Method (MIM), which adds indicator variables to indicate the missing pattern, can be used in conjunction with imputation to improve model performance. While commonly used in data science, MIM is surprisingly understudied from an empirical and especially theoretical perspective. In this paper, we show empirically and theoretically that MIM improves performance for informative missing values, and we prove that MIM does not hurt linear models asymptotically for uninformative missing values. Additionally, we find that for high-dimensional data sets with many uninformative indicators, MIM can induce model overfitting and thus test performance. To address this issue, we introduce Selective MIM (SMIM), a novel MIM extension that adds missing indicators only for features that have informative missing patterns. We show empirically that SMIM performs at least as well as MIM in general, and improves MIM for high-dimensional data. Lastly, to demonstrate the utility of MIM on real-world data science tasks, we demonstrate the effectiveness of MIM and SMIM on clinical tasks generated from the MIMIC-III database of electronic health records

    Using Interpretable Machine Learning to Predict Maternal and Fetal Outcomes

    Full text link
    Most pregnancies and births result in a good outcome, but complications are not uncommon and when they do occur, they can be associated with serious implications for mothers and babies. Predictive modeling has the potential to improve outcomes through better understanding of risk factors, heightened surveillance, and more timely and appropriate interventions, thereby helping obstetricians deliver better care. For three types of complications we identify and study the most important risk factors using Explainable Boosting Machine (EBM), a glass box model, in order to gain intelligibility: (i) Severe Maternal Morbidity (SMM), (ii) shoulder dystocia, and (iii) preterm preeclampsia. While using the interpretability of EBM's to reveal surprising insights into the features contributing to risk, our experiments show EBMs match the accuracy of other black-box ML methods such as deep neural nets and random forests.Comment: DSHealth at SIGKDD 2022, 5 pages, 3 figure
    corecore