235 research outputs found
Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics
Alcohol dehydrogenases (ADH) participate in
the biosynthetic pathway of aroma volatiles in fruit by
interconverting aldehydes to alcohols and providing substrates
for the formation of esters. Two highly divergent
ADH genes (15% identity at the amino acid level) of
Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis)
have been isolated. Cm-ADH1 belongs to the
medium-chain zinc-binding type of ADHs and is highly
similar to all ADH genes expressed in fruit isolated so far.
Cm-ADH2 belongs to the short-chain type of ADHs. The
two encoded proteins are enzymatically active upon
expression in yeast. Cm-ADH1 has strong preference for
NAPDH as a co-factor, whereas Cm-ADH2 preferentially
uses NADH. Both Cm-ADH proteins are much more active
as reductases with Kms 10–20 times lower for the conversion
of aldehydes to alcohols than for the dehydrogenation
of alcohols to aldehydes. They both show strong preference
for aliphatic aldehydes but Cm-ADH1 is capable of
reducing branched aldehydes such as 3-methylbutyraldehyde,
whereas Cm-ADH2 cannot. Both Cm-ADH genes are
expressed specifically in fruit and up-regulated during
ripening. Gene expression as well as total ADH activity are
strongly inhibited in antisense ACC oxidase melons and in
melon fruit treated with the ethylene antagonist 1-methylcyclopropene
(1-MCP), indicating a positive regulation by
ethylene. These data suggest that each of the Cm-ADH
protein plays a specific role in the regulation of aroma
biosynthesis in melon fruit
Novel Topical Microbicides Through Combinatorial Strategies
Purpose Developing microbicides for topical epithelial applications is extremely challenging, as evidenced by the scarcity of approved products even after decades of research. Chemical enhancers, including surfactants, are known to be effective antimicrobial agents but are typically toxic towards epithelial cells. Here, we report on the discovery of unique surfactant formulations with improved safety and efficacy profile for epithelial applications, via a combination of high throughput screening techniques. Methods Over three-hundred formulations derived from nine surfactants were screened for antibacterial properties against E. coli in vitro. A subset of these formulations showed high antibacterial activity and was screened for cytotoxicity in vitro. Formulations showing high antibacterial activity and reduced cytotoxicity compared to their individual components were tested for efficacy against B. thailendensis, a model for melioidosis-causing B. pseudomallei. Results Lead formulations showed lower toxicity towards epidermal keratinocytes, with LC50 values up to 3.5-fold higher than their component surfactants, while maintaining antibacterial efficacy against B. thailendensis. Conclusions Our results demonstrate that such a combinatorial screening approach can be used for designing safe and potent microbicides for epithelial applications
Muscle UCP-3 mRNA levels are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans
The mitochondrial uncoupling proteins-2 and -3 are putative mediators of thermogenesis and energy expenditure. We measured the mRNA levels of uncoupling proteins-2 and -3 in skeletal muscle from 12 gastrointestinal adenocarcinoma patients, of whom six had stable weight and six had lost 2–18 kg, and from six healthy controls undergoing elective surgery. Uncoupling proteins-3 mRNA levels were significantly higher in the muscle of the cancer patients with weight loss (2.2±0.47 arbitrary units) compared both with controls (0.39±0.20) and with cancer patients who had not lost weight (0.47±0.23; P<0.02). Uncoupling proteins-2 mRNA levels did not differ significantly between groups. Elevations in muscle uncoupling proteins-3 activity may enhance energy expenditure and this in turn could contribute to tissue catabolism
The development and application of a new tool to assess the adequacy of the content and timing of antenatal care
Abstract
Background: Current measures of antenatal care use are limited to initiation of care and number of visits. This
study aimed to describe the development and application of a tool to assess the adequacy of the content and
timing of antenatal care.
Methods: The Content and Timing of care in Pregnancy (CTP) tool was developed based on clinical relevance for
ongoing antenatal care and recommendations in national and international guidelines. The tool reflects minimal
care recommended in every pregnancy, regardless of parity or risk status. CTP measures timing of initiation of care,
content of care (number of blood pressure readings, blood tests and ultrasound scans) and whether the
interventions were received at an appropriate time. Antenatal care trajectories for 333 pregnant women were then
described using a standard tool (the APNCU index), that measures the quantity of care only, and the new CTP tool.
Both tools categorise care into 4 categories, from ‘Inadequate’ (both tools) to ‘Adequate plus’ (APNCU) or
‘Appropriate’ (CTP). Participants recorded the timing and content of their antenatal care prospectively using diaries.
Analysis included an examination of similarities and differences in categorisation of care episodes between the
tools.
Results: According to the CTP tool, the care trajectory of 10,2% of the women was classified as inadequate, 8,4%
as intermediate, 36% as sufficient and 45,3% as appropriate. The assessment of quality of care differed significantly
between the two tools. Seventeen care trajectories classified as ‘Adequate’ or ‘Adequate plus’ by the APNCU were
deemed ‘Inadequate’ by the CTP. This suggests that, despite a high number of visits, these women did not receive
the minimal recommended content and timing of care.
Conclusions: The CTP tool provides a more detailed assessment of the adequacy of antenatal care than the
current standard index. However, guidelines for the content of antenatal care vary, and the tool does not at the
moment grade over-use of interventions as ‘Inappropriate’. Further work needs to be done to refine the content
items prior to larger scale testing of the impact of the new measure
Predicting Risky Drinking Outcomes Longitudinally: What Kind of Advance Notice Can We Get?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65954/1/j.1530-0277.2006.00033.x.pd
Constraints on energetic particles in the Fleischmann-Pons experiment
In recent Fleischmann–Pons experiments carried out by different groups, a thermal signal is seen indicative of excess energy production of a magnitude much greater than can be accounted for by chemistry. Correlated with the excess heat appears to be 4He, with the associated energy near 24 MeV per helium atom. In nuclear reactions, the energy produced is expressed through the kinetic energy of the products; hence, it would be natural to assume that some of the reaction energy ends up as kinetic energy of the 4He nucleus. Depending on the energy that the helium nucleus is born with, it will result in radiation (such as neutrons or x-rays) that can be seen outside of the cell. We have computed estimates of the expected neutron and x-ray emission as a function of helium energy and compared the results with upper limits taken from experiments. Experimental results with upper limits of neutron emission between 0.008 and 0.8 n/J are found to correspond to upper limits in alpha energy between 6.2 and 20.2 keV
Quantitative Whole Body Biodistribution of Fluorescent-Labeled Agents by Non-Invasive Tomographic Imaging
When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Integrating Palliative Care Into the Care of Neurocritically Ill Patients: A Report From the Improving Palliative Care in the ICU Project Advisory Board and the Center to Advance Palliative Care.
OBJECTIVES: To describe unique features of neurocritical illness that are relevant to provision of high-quality palliative care; to discuss key prognostic aids and their limitations for neurocritical illnesses; to review challenges and strategies for establishing realistic goals of care for patients in the neuro-ICU; and to describe elements of best practice concerning symptom management, limitation of life support, and organ donation for the neurocritically ill.
DATA SOURCES: A search of PubMed and MEDLINE was conducted from inception through January 2015 for all English-language articles using the term palliative care, supportive care, end-of-life care, withdrawal of life-sustaining therapy, limitation of life support, prognosis, or goals of care together with neurocritical care, neurointensive care, neurological, stroke, subarachnoid hemorrhage, intracerebral hemorrhage, or brain injury.
DATA EXTRACTION AND SYNTHESIS: We reviewed the existing literature on delivery of palliative care in the neurointensive care unit setting, focusing on challenges and strategies for establishing realistic and appropriate goals of care, symptom management, organ donation, and other considerations related to use and limitation of life-sustaining therapies for neurocritically ill patients. Based on review of these articles and the experiences of our interdisciplinary/interprofessional expert advisory board, this report was prepared to guide critical care staff, palliative care specialists, and others who practice in this setting.
CONCLUSIONS: Most neurocritically ill patients and their families face the sudden onset of devastating cognitive and functional changes that challenge clinicians to provide patient-centered palliative care within a complex and often uncertain prognostic environment. Application of palliative care principles concerning symptom relief, goal setting, and family emotional support will provide clinicians a framework to address decision making at a time of crisis that enhances patient/family autonomy and clinician professionalism
Flowering Time Diversification and Dispersal in Central Eurasian Wild Wheat Aegilops tauschii Coss.: Genealogical and Ecological Framework
Timing of flowering is a reproductive trait that has significant impact on fitness in plants. In contrast to recent advances in understanding the molecular basis of floral transition, few empirical studies have addressed questions concerning population processes of flowering time diversification within species. We analyzed chloroplast DNA genealogical structure of flowering time variation in central Eurasian wild wheat Aegilops tauschii Coss. using 200 accessions that represent the entire species range. Flowering time measured as days from germination to flowering varied from 144.0 to 190.0 days (average 161.3 days) among accessions in a common garden/greenhouse experiment. Subsequent genealogical and statistical analyses showed that (1) there exist significant longitudinal and latitudinal clines in flowering time at the species level, (2) the early-flowering phenotype evolved in two intraspecific lineages, (3) in Asia, winter temperature was an environmental factor that affected the longitudinal clinal pattern of flowering time variation, and (4) in Transcaucasus-Middle East, some latitudinal factors affected the geographic pattern of flowering time variation. On the basis of palaeoclimatic, biogeographic, and genetic evidence, the northern part of current species' range [which was within the temperate desert vegetation (TDV) zone at the Last Glacial Maximum] is hypothesized to have harbored species refugia. Postglacial southward dispersal from the TDV zone seems to have been driven by lineages that evolved short-flowering-time phenotypes through different genetic mechanisms in Transcaucasus-Middle East and Asia
- …