1,695 research outputs found
A Keck/HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. I. Testing Giant Planet Formation and Migration Scenarios
We describe a high-precision Doppler search for giant planets orbiting a
well-defined sample of metal-poor dwarfs in the field. This experiment
constitutes a fundamental test of theoretical predictions which will help
discriminate between proposed giant planet formation and migration models. We
present here details on the survey as well as an overall assessment of the
quality of our measurements, making use of the results for the stars that show
no significant velocity variation.Comment: 25 pages, 7 figures, accepted for publication in the Astrophysical
Journa
Models of the formation of the planets in the 47 UMa system
Formation of planets in the 47 UMa system is followed in an evolving
protoplanetary disk composed of gas and solids. The evolution of the disk is
calculated from an early stage, when all solids, assumed to be high-temperature
silicates, are in the dust form, to the stage when most solids are locked in
planetesimals. The simulation of planetary evolution starts with a solid embryo
of ~1 Earth mass, and proceeds according to the core accretion -- gas capture
model. Orbital parameters are kept constant, and it is assumed that the
environment of each planet is not perturbed by the second planet. It is found
that conditions suitable for both planets to form within several Myr are easily
created, and maintained throughout the formation time, in disks with . In such disks, a planet of 2.6 Jupiter masses (the minimum for
the inner planet of the 47 UMa system) may be formed at 2.1 AU from the star in
\~3 Myr, while a planet of 0.89 Jupiter masses (the minimum for the outer
planet) may be formed at 3.95 AU from the star in about the same time. The
formation of planets is possible as a result of a significant enhancement of
the surface density of solids between 1.0 and 4.0 AU, which results from the
evolution of a disk with an initially uniform gas-to-dust ratio of 167 and an
initial radius of 40 AU.Comment: Accepted for publication in A&A. 10 pages, 10 figure
Ethylene and other stimuli affect expression of the UDP glucose-flavonoid 3-O-glucosyltransferase in a non-climacteric fruit
The UDP glucose-flavonoid 3-O-glucoslyltransferase (UFGT) is a key enzyme for biosynthesis and stability of anthocyanin pigments of red grapes. Understanding factors affecting expression of this enzyme is thus important for the control of grape colour. A 1640 bp promoter region of the grapevine ufgt gene was cloned and sequenced. Sequence analysis revealed seven putative ethylene-responsive cis-elements and others related to three major signals known to induce anthocyanin accumulation in plant tissues: light, sugar, and abscisic acid. In order to evaluate the ability of ethylene and other signals to drive expression from the ufgt promoter, we ran transient expression experiments using an anthocyanin-rich grape cell culture, with very low green auto-fluorescence. After biolistic bombardment, the cells were treated with various combinations of the four signals on gfp expression (green fluorescent protein). The comparison of fluorescent light intensity in cells subjected to the various treatments showed that ethylene better stimulates expression of the ufgt promoter in the dark than under light. In addition, results showed that there may be a positive interaction between ethylene and abscisic acid. This system, a promoter of interest driving the gfp expression in cells with low auto-fluorescence, may be a good tool for studies about synergistic or antagonist roles of transcription factors. Moreover, treatment of grape berries with a specific inhibitor of ethylene receptors (1-methylcyclopropene) inhibited ufgt mRNA accumulation. This confirms that the ethylene signal is likely a regulator of grape UFGT expression in a non-climacteric fruit.
The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks II. Extended Simulations with Varied Cooling Rates
In order to investigate mass transport and planet formation by gravitational
instabilities (GIs), we have extended our 3-D hydrodynamic simulations of
protoplanetary disks from a previous paper. Our goal is to determine the
asymptotic behavior of GIs and how it is affected by different constant cooling
times. Initially, Rdisk = 40 AU, Mdisk = 0.07 Mo, M* = 0.5 Mo, and Qmin = 1.8.
Sustained cooling, with tcool = 2 orps (outer rotation periods, 1 orp ~ 250
yrs), drives the disk to instability in ~ 4 orps. This calculation is followed
for 23.5 orps. After 12 orps, the disk settles into a quasi-steady state with
sustained nonlinear instabilities, an average Q = 1.44 over the outer disk, a
well-defined power-law Sigma(r), and a roughly steady Mdot ~ 5(-7) Mo/yr. The
transport is driven by global low-order spiral modes. We restart the
calculation at 11.2 orps with tcool = 1 and 1/4 orp. The latter case is also
run at high azimuthal resolution. We find that shorter cooling times lead to
increased Mdots, denser and thinner spiral structures, and more violent dynamic
behavior. The asymptotic total internal energy and the azimuthally averaged
Q(r) are insensitive to tcool. Fragmentation occurs only in the high-resolution
tcool = 1/4 orp case; however, none of the fragments survive for even a quarter
of an orbit. Ring-like density enhancements appear and grow near the boundary
between GI active and inactive regions. We discuss the possible implications of
these rings for gas giant planet formation.Comment: Due to document size restrictions, the complete manuscript could not
be posted on astroph. Please go to http://westworld.astro.indiana.edu to
download the full document including figure
Substellar companions and isolated planetary mass objects from protostellar disc fragmentation
Self-gravitating protostellar discs are unstable to fragmentation if the gas
can cool on a time scale that is short compared to the orbital period. We use a
combination of hydrodynamic simulations and N-body orbit integrations to study
the long term evolution of a fragmenting disc with an initial mass ratio to the
star of M_disc/M_star = 0.1. For a disc which is initially unstable across a
range of radii, a combination of collapse and subsequent accretion yields
substellar objects with a spectrum of masses extending (for a Solar mass star)
up to ~0.01 M_sun. Subsequent gravitational evolution ejects most of the lower
mass objects within a few million years, leaving a small number of very massive
planets or brown dwarfs in eccentric orbits at moderately small radii. Based on
these results, systems such as HD 168443 -- in which the companions are close
to or beyond the deuterium burning limit -- appear to be the best candidates to
have formed via gravitational instability. If massive substellar companions
originate from disc fragmentation, while lower-mass planetary companions
originate from core accretion, the metallicity distribution of stars which host
massive substellar companions at radii of ~1 au should differ from that of
stars with lower mass planetary companions.Comment: 5 pages, accepted for publication in MNRA
Annealing of Silicate Dust by Nebular Shocks at 10 AU
Silicate dust grains in the interstellar medium are known to be mostly
amorphous, yet crystalline silicate grains have been observed in many
long-period comets and in protoplanetary disks. Annealing of amorphous silicate
grains into crystalline grains requires temperatures > 1000 K, but exposure of
dust grains in comets to such high temperatures is incompatible with the
generally low temperatures experienced by comets. This has led to the proposal
of models in which dust grains were thermally processed near the protoSun, then
underwent considerable radial transport until they reached the gas giant planet
region where the long-period comets originated. We hypothesize instead that
silicate dust grains were annealed in situ, by shock waves triggered by
gravitational instabilities. We assume a shock speed of 5 km/s, a plausible
value for shocks driven by gravitational instabilities. We calculate the peak
temperatures of micron and submicron amorphous pyroxene grains of chondritic
composition under conditions typical in protoplanetary disks at 5 - 10 AU. Our
results also apply to chondritic amorphous olivine grains. We show that {\it in
situ} thermal annealing of submicron and micron-sized silicate dust grains can
occur, obviating the need for large-scale radial transport.Comment: 12 pages; includes 1 figure, 1 table; accepted by ApJ Letter
Convergence of SPH simulations of self-gravitating accretion discs: Sensitivity to the implementation of radiative cooling
Recent simulations of self-gravitating accretion discs, carried out using a
three-dimensional Smoothed Particle Hydrodynamics (SPH) code by Meru and Bate,
have been interpreted as implying that three-dimensional global discs fragment
much more easily than would be expected from a two-dimensional local model.
Subsequently, global and local two-dimensional models have been shown to
display similar fragmentation properties, leaving it unclear whether the
three-dimensional results reflect a physical effect or a numerical problem
associated with the treatment of cooling or artificial viscosity in SPH. Here,
we study how fragmentation of self-gravitating disc flows in SPH depends upon
the implementation of cooling. We run disc simulations that compare a simple
cooling scheme, in which each particle loses energy based upon its internal
energy per unit mass, with a method in which the cooling is derived from a
smoothed internal energy density field. For the simple per particle cooling
scheme, we find a significant increase in the minimum cooling time scale for
fragmentation with increasing resolution, matching previous results. Switching
to smoothed cooling, however, results in lower critical cooling time scales,
and tentative evidence for convergence at the highest spatial resolution
tested. We conclude that precision studies of fragmentation using SPH require
careful consideration of how cooling (and, probably, artificial viscosity) is
implemented, and that the apparent non-convergence of the fragmentation
boundary seen in prior simulations is likely a numerical effect. In real discs,
where cooling is physically smoothed by radiative transfer effects, the
fragmentation boundary is probably displaced from the two-dimensional value by
a factor that is only of the order of unity.Comment: 9 pages, 11 figures, MNRAS in pres
A Search for Exozodiacal Clouds with Kepler
Planets embedded within dust disks may drive the formation of large scale
clumpy dust structures by trapping dust into resonant orbits. Detection and
subsequent modeling of the dust structures would help constrain the mass and
orbit of the planet and the disk architecture, give clues to the history of the
planetary system, and provide a statistical estimate of disk asymmetry for
future exoEarth-imaging missions. Here we present the first search for these
resonant structures in the inner regions of planetary systems by analyzing the
light curves of hot Jupiter planetary candidates identified by the Kepler
mission. We detect only one candidate disk structure associated with KOI 838.01
at the 3-sigma confidence level, but subsequent radial velocity measurements
reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk
structure is a false positive. Using our null result, we place an upper limit
on the frequency of dense exozodi structures created by hot Jupiters. We find
that at the 90% confidence level, less than 21% of Kepler hot Jupiters create
resonant dust clumps that lead and trail the planet by ~90 degrees with optical
depths >~5*10^-6, which corresponds to the resonant structure expected for a
lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as
the zodiacal cloud.Comment: 22 pages, 6 figures, Accepted for publication in Ap
Effect of B-site Dopants on Magnetic and Transport Properties of LaSrCoRuO
Effect of Co, Ru and Cu substitution at B and B' sites on the magnetic and
transport properties of LaSrCoRuO have been investigated. All the doped
compositions crystallize in the monoclinic structure in the space group
indicating a double perovskite structure. While the magnetization and
conductivity increase in Co and Ru doped compounds, antiferromagnetism is seen
to strengthen in the Cu doped samples. These results are explained on the basis
of a competition between linear Co-O-Ru-O-Co and perpendicular Co-O-O-Co
antiferromagnetic interactions and due to formation of Ru-O-Ru ferromagnetic
networks
Dusty Cometary Globules in W5
We report the discovery of four dusty cometary tails around low mass stars in
two young clusters belonging to the W5 star forming region. Fits to the
observed emission profiles from 24 micron observations with the Spitzer Space
Telescope give tail lifetimes < 30 Myr, but more likely < 5 Myr. This result
suggests that the cometary phase is a short lived phenomenon, occurring after
photoevaporation by a nearby O star has removed gas from the outer disk of a
young low mass star (see also Balog et al. 2006; Balog et al. 2008).Comment: 11 pages, 3 figures. Accepted for publication to ApJ Letter
- …