19 research outputs found

    Development of B cells in scid mice with immunoglobulin transgenes: Implications for the Control of V(D)J recombination

    Get PDF
    AbstractThe inability of scid pro-B cells to progress to the pre-B and B cell stages is believed to be caused by a defective recombinase activity that fails to resolve chromosomal breaks resulting from attempted V(D)J recombination. In support of this model, we report that certain immunoglobulin transgenes, specifically those which strongly Inhibit endogenous VH-to-DJH and VΞΊ-to-JΞΊ rearrangement in wild-type mice, allow ccid pro-B cells to progress to the pre-B and B cell stages. This rescue of scid B cell differentiation is associated with a dramatic reduction in expression of the recombination activation genes, RAG1 and RAG2, and with reduced transcription of the K locus

    DNA-dependent Protein Kinase Activity Is Not Required for Immunoglobulin Class Switching

    Get PDF
    Class switch recombination (CSR), similar to V(D)J recombination, is thought to involve DNA double strand breaks and repair by the nonhomologous end–joining pathway. A key component of this pathway is DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and a DNA-binding heterodimer (Ku70/80). To test whether DNA-PKcs activity is essential for CSR, we examined whether IgM+ B cells from scid mice with site-directed H and L chain transgenes were able to undergo CSR. Although B cells from these mice were shown to lack DNA-PKcs activity, they were able to switch from IgM to IgG or IgA with close to the same efficiency as B cells from control transgenic and nontransgenic scid/+ mice, heterozygous for the scid mutation. We conclude that CSR, unlike V(D)J recombination, can readily occur in the absence of DNA-PKcs activity. We suggest nonhomologous end joining may not be the (primary or only) mechanism used to repair DNA breaks during CSR
    corecore