202 research outputs found

    The role of noise and positive feedback in the onset of autosomal dominant diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal dominant (AD) diseases result when a single mutant or non-functioning gene is present on an autosomal chromosome. These diseases often do not emerge at birth. There are presently two prevailing theories explaining the expression of AD diseases. One explanation originates from the Knudson two-hit theory of hereditary cancers, where loss of heterozygosity or occurrence of somatic mutations impairs the function of the wild-type copy. While these somatic second hits may be sufficient for stable disease states, it is often difficult to determine if their occurrence necessarily marks the initiation of disease progression. A more direct consequence of a heterozygous genetic background is haploinsufficiency, referring to a lack of sufficient gene function due to reduced wild-type gene copy number; however, haploinsufficiency can involve a variety of additional mechanisms, such as noise in gene expression or protein levels, injury and second hit mutations in other genes. In this study, we explore the possible contribution to the onset of autosomal dominant diseases from intrinsic factors, such as those determined by the structure of the molecular networks governing normal cellular physiology.</p> <p>Results</p> <p>First, simple models of single gene insufficiency using the positive feedback loops that may be derived from a three-component network were studied by computer simulation using Bionet software. The network structure is shown to affect the dynamics considerably; some networks are relatively stable even when large stochastic variations in are present, while others exhibit switch-like dynamics. In the latter cases, once the network switches over to the disease state it remains in that state permanently. Model pathways for two autosomal dominant diseases, AD polycystic kidney disease and mature onset diabetes of youth (MODY) were simulated and the results are compared to known disease characteristics.</p> <p>Conclusions</p> <p>By identifying the intrinsic mechanisms involved in the onset of AD diseases, it may be possible to better assess risk factors as well as lead to potential new drug targets. To illustrate the applicability of this study of pathway dynamics, we simulated the primary pathways involved in two autosomal dominant diseases, Polycystic Kidney Disease (PKD) and mature onset diabetes of youth (MODY). Simulations demonstrate that some of the primary disease characteristics are consistent with the positive feedback - stochastic variation theory presented here. This has implications for new drug targets to control these diseases by blocking the positive feedback loop in the relevant pathways.</p

    Combined in vivo depletion of glycoprotein VI and C-type lectin-like receptor 2 severely compromises hemostasis and abrogates arterial thrombosis in mice

    Get PDF
    Objective— Platelet inhibition is a major strategy to prevent acute ischemic cardiovascular and cerebrovascular events, which may, however, be associated with an increased bleeding risk. The (hem)immunoreceptor tyrosine activation motif–bearing platelet receptors, glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2), might be promising antithrombotic targets because they can be depleted from circulating platelets by antibody treatment, leading to sustained antithrombotic protection, but only moderately increased bleeding times in mice. Approach and Results— We investigated whether both (hem)immunoreceptor tyrosine activation motif–bearing receptors can be targeted simultaneously and what the in vivo consequences of such a combined therapeutic GPVI/CLEC-2 deficiency are. We demonstrate that isolated targeting of either GPVI or CLEC-2 in vivo does not affect expression or function of the respective other receptor. Moreover, simultaneous treatment with both antibodies resulted in the sustained loss of both GPVI and CLEC-2, while leaving other activation pathways intact. However, GPVI/CLEC-2–depleted mice displayed a dramatic hemostatic defect and profound impairment of arterial thrombus formation. Furthermore, a strongly diminished hemostatic response could also be reproduced in mice genetically lacking GPVI and CLEC-2. Conclusions— These results demonstrate that GPVI and CLEC-2 can be simultaneously downregulated in platelets in vivo and reveal an unexpected functional redundancy of the 2 receptors in hemostasis and thrombosis. These findings may have important implications of the potential use of anti-GPVI and anti–CLEC-2–based agents in the prevention of thrombotic diseases. </jats:sec

    The Rho GDI Rdi1 regulates Rho GTPases by distinct mechanisms

    Get PDF
    © 2008 by The American Society for Cell Biology. Under the License and Publishing Agreement, authors grant to the general public, effective two months after publication of (i.e.,. the appearance of) the edited manuscript in an online issue of MBoC, the nonexclusive right to copy, distribute, or display the manuscript subject to the terms of the Creative Commons–Noncommercial–Share Alike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0).The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3β homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.Deutsche Forschungsgemeinschaf

    Hepatobiliary neuroendocrine carcinoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Neuroendocrine carcinoma of the gallbladder is a rather uncommon disease. We report a case of a neuroendocrine tumor that was located in the wall of the gallbladder and that extended into the liver.</p> <p>Case presentation</p> <p>A 52-year-old Caucasian woman presented with right-sided abdominal pain, ascites and jaundice. An MRI scan revealed a tumor mass located in the gallbladder wall and involving the liver. A partial hepatectomy and cholecystectomy were performed. Histology revealed a neuroendocrine tumor, which showed scattered Grimelius positive cells and immuno-expressed epithelial and endocrine markers. Our patient is undergoing chemotherapy treatment.</p> <p>Conclusion</p> <p>Gastroenteropancreatic neuroendocrine tumors need a multidisciplinary approach, involving immunohistochemistry and molecular-genetic techniques.</p

    Canine classical seminoma: a specific malignant type with human classifications is highly correlated with tumor angiogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human seminoma is classified as classical seminoma (SE) and spermatocytic seminoma (SS). Human SE is known to be more malignant and metastasizing more frequently than SS. Tumor angiogenesis is highly related with tumor progression and metastasis, with microvessel density (MVD) being an important parameter of metastatic potential. Canine seminoma is not yet well-established as SE or SS type including correlation with angiogenesis. We classified canine SE and SS, and then compared them to tumor associated vessels.</p> <p>Methods</p> <p>Twenty-three cases of canine seminomas (2 intratubular, 9 diffuse, and 12 intratubular/diffuse seminomas showing both intratubular and diffuse patterns) were classified as SE or SS by immunohistochemistry (IHC) using monoclonal antibody against PLAP and by PAS stain. The histopathological data were then compared to see if there was a correlation with SE or SS. Angiogenesis of seminomas were evaluated by immunohistochemical assay using polyclonal antibody against Von Willebrand factor (vWF) and by calculating the means of MVD, vessels area and perimeters using computerized image analysis. Statistical Package for Social Sciences (SPSS) program was used for various statistical analyses.</p> <p>Results</p> <p>The numbers of PLAP+/PAS+ canine SEs were 8/23 (34.8%) and PLAP-/PAS- SSs were 15/23 (61.2%). All SE cases (8/8, 100%) were intratubular/diffuse types. SS types included 2 intratubular (2/15, 13.3%), 9 diffuse (9/15, 60%), and 4 intratubular/diffuse (4/15, 26.7%) types. MVD and vascular parameters in SEs were significantly higher than in SSs, showing the highest value in the intratubular/diffuse type. Seminomas observed with neoplastic cells invasion of vessels presented higher perimeter and area values than seminomas without conformed neoplastic cells invasion.</p> <p>Conclusion</p> <p>In this study, we demonstrated a positive relationship between canine SE and tumor angiogenesis. Furthermore, we also showed that a tumor cells invasion of vessels were a correlated vascular parameter. Although metastasis of canine seminomas has rarely been reported, our results support that canine SE could have high metastatic potential similar to the human counterpart. Further studies are required to clarify the relationship between canine SE and clinical data with metastatic factors.</p

    The Schizosaccharomyces pombe Hsp104 Disaggregase Is Unable to Propagate the [PSI+] Prion

    Get PDF
    The molecular chaperone Hsp104 is a crucial factor in the acquisition of thermotolerance in yeast. Under stress conditions, the disaggregase activity of Hsp104 facilitates the reactivation of misfolded proteins. Hsp104 is also involved in the propagation of fungal prions. For instance, the well-characterized [PSI+] prion of Saccharomyces cerevisiae does not propagate in Δhsp104 cells or in cells overexpressing Hsp104. In this study, we characterized the functional homolog of Hsp104 from Schizosaccharomyces pombe (Sp_Hsp104). As its S. cerevisiae counterpart, Sp_hsp104+ is heat-inducible and required for thermotolerance in S. pombe. Sp_Hsp104 displays low disaggregase activity and cannot propagate the [PSI+] prion in S. cerevisiae. When overexpressed in S. cerevisiae, Sp_Hsp104 confers thermotolerance to Δhsp104 cells and reactivates heat-aggregated proteins. However, overexpression of Sp_Hsp104 does not propagate nor eliminate [PSI+]. Strikingly, [PSI+] was cured by overexpression of a chimeric chaperone bearing the C-terminal domain (CTD) of the S. cerevisiae Hsp104 protein. Our study demonstrates that the ability to untangle aggregated proteins is conserved between the S. pombe and S. cerevisiae Hsp104 homologs, and points to a role of the CTD in the propagation of the S. cerevisiae [PSI+] prion

    Survival of patients with nonseminomatous germ cell cancer: a review of the IGCC classification by Cox regression and recursive partitioning

    Get PDF
    The International Germ Cell Consensus (IGCC) classification identifies good, intermediate and poor prognosis groups among patients with metastatic nonseminomatous germ cell tumours (NSGCT). It uses the risk factors primary site, presence of nonpulmonary visceral metastases and tumour markers alpha-fetoprotein (AFP), human chorionic gonadotrophin (HCG) and lactic dehydrogenase (LDH). The IGCC classification is easy to use and remember, but lacks flexibility. We aimed to examine the extent of any loss in discrimination within the IGCC classification in comparison with alternative modelling by formal weighing of the risk factors. We analysed survival of 3048 NSGCT patients with Cox regression and recursive partitioning for alternative classifications. Good, intermediate and poor prognosis groups were based on predicted 5-year survival. Classifications were further refined by subgrouping within the poor prognosis group. Performance was measured primarily by a bootstrap corrected c-statistic to indicate discriminative ability for future patients. The weights of the risk factors in the alternative classifications differed slightly from the implicit weights in the IGCC classification. Discriminative ability, however, did not increase clearly (IGCC classification, c=0.732; Cox classification, c=0.730; Recursive partitioning classification, c=0.709). Three subgroups could be identified within the poor prognosis groups, resulting in classifications with five prognostic groups and slightly better discriminative ability (c = 0.740). In conclusion, the IGCC classification in three prognostic groups is largely supported by Cox regression and recursive partitioning. Cox regression was the most promising tool to define a more refined classification

    Systems Biology by the Rules: Hybrid Intelligent Systems for Pathway Modeling and Discovery

    Get PDF
    Background: Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results: A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion: This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer

    CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. METHODS: The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). RESULTS: PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. CONCLUSIONS: CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity
    corecore