23 research outputs found

    Synthesis of Cycloheptatriene-Containing Azetidine Lactones

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Organic Chemistry, copyright © 2022 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.joc.2c00367.We prepared a collection of complex cycloheptatriene-containing azetidine lactones by applying two key photochemical reactions: “aza-Yang” cyclization and Buchner carbene insertion into aromatic rings. While photolysis of phenacyl amines leads to a rapid charge transfer and elimination, we found that a simple protonation of the amine enables the formation of azetidinols as single diastereomers. We provide evidence, through ultrafast spectroscopy, for the electron transfer from free amines in the excited state. Further, we characterize the aza-Yang reaction by establishing the dependence of the initial reaction rates on the rates of photon absorption. An unanticipated change in reactivity in morpholine analogues is explained through interactions with the tosylate anion. The Buchner reaction proceeds with a slight preference for one diastereomer over the other, and successful reaction requires electron-donating carbene-stabilizing substituents. Overall, 16 compounds were prepared over seven steps. Guided by an increase in structural complexity, efforts such as this one extend the reach of chemists into unexplored chemical space and provide useful quantities of new compounds for studies focused on their properties

    RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays

    Get PDF
    RNA splicing is an essential step in producing mature messenger RNA (mRNA) and other RNA species. Harnessing RNA splicing modifiers as a new pharmacological modality is promising for the treatment of diseases caused by aberrant splicing. This drug modality can be used for infectious diseases by disrupting the splicing of essential pathogenic genes. Several antisense oligonucleotide splicing modifiers were approved by the U.S. Food and Drug Administration (FDA) for the treatment of spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Recently, a small-molecule splicing modifier, risdiplam, was also approved for the treatment of SMA, highlighting small molecules as important warheads in the arsenal for regulating RNA splicing. The cellular targets of these approved drugs are all mRNA precursors (pre-mRNAs) in human cells. The development of novel RNA-targeting splicing modifiers can not only expand the scope of drug targets to include many previously considered “undruggable” genes but also enrich the chemical-genetic toolbox for basic biomedical research. In this review, we summarized known splicing modifiers, screening methods for novel splicing modifiers, and the chemical space occupied by the small-molecule splicing modifiers

    Synthetic lethality by targeting the RUVBL1/2-TTT complex in mTORC1-hyperactive cancer cells

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.NIH 1RO1CA142805National Research Foundation of Korea (NRF) grant (NRF-2017R1C1B1006072

    Compound Collections at KU 1947-2017: Cheminformatic Analysis and Computational Protein Target Prediction

    No full text
    We report the comparison of two small-molecule collections synthesized at KU at two different eras. We used a machine learning tool to classify the compounds in these collections by their predicted protein targets. The analyses shine light on the evolution of medicinal chemistry research at the University of Kansas, and reveal several new associations between compounds and protein targets. </div

    Synthetic applications of photochemical decarbonylation of oxetanone and azetidinone

    No full text
    Previously unexplored decarbonylative photochemistry of 3-oxetanone and N-Boc-3- azetidinone is described. Dipoles derived from both compounds undergo [3+2] cycloaddition with a variety of alkenes to produce substituted tetrahydrofurans and pyrrolidines, respectively. The reaction has a sufficiently wide scope to produce scaffolds that were either previously inaccessible or difficult to synthesize, thereby providing experimental access to new chemical space

    On the relation between Zenkevich and Wiener indices of alkanes

    No full text
    A relatively complicated relation was found to exist between the quantity U, recently introduced by Zenkevich (providing a measure of internal molecular energy), and the Wiener index W (measuring molecular surface area and intermolecular forces). We now report a detailed analysis of this relation and show that, in the case of alkanes, its main features are reproduced by the formula U = aW + b + gn1; where n1 is the number of methyl groups, and a, b and g are constants, depending only on the number of carbon atoms. Thus, for isomeric alkanes with the same number of methyl groups, U and W are linearly correlated

    Broad Assessment of Bioactivity of a Collection of Spiroindane Pyrrolidines Through “Cell Painting”

    No full text
    A collection of small molecules has been synthesized by composing photo-cycloaddition, C-H functionalization, and N-capping strategies. Multidimensional biological fingerprints of molecules comprising this collection have been recorded as changes in cell and organelle morphology. This untargeted, phenotypic approach allowed for a broad assessment of biological activity to be determined. Reproducibility and the magnitude of measured fingerprints revealed activity of several treatments. Reactive functional groups, such as imines, dominated the observed activity. Two non-reactive candidate compounds with distinct bioactivity fingerprints were identified, as well
    corecore