58 research outputs found

    Magnetization reversal in spin patterns with complex geometry

    Full text link
    We study field-driven dynamics of spins with antiferromagnetic interaction along the links of a complex substrate geometry, which is modeled by graphs of a controlled connectivity distribution. The magnetization reversal occurs in avalanches of spin flips, which are pinned by the topological constraints of the underlying graph. The hysteresis loop and avalanche sizes are analyzed and classified in terms of graph's connectivity and clustering. The results are relevant for magnets with a hierarchical spatial inhomogeneity and for design of nanoscale magnetic devices.Comment: 4 pages, 3 color figures, revtex

    Topographical and Cell Type-Specific Connectivity of Rostral and Caudal Forelimb Corticospinal Neuron Populations

    Get PDF
    Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse assortment of cells with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, the full diversity of spinal neurons targeted by CFA and RFA CSNs is uncharted. Here, we use anatomical and RNA sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal neuron types, with notable exceptions that suggest that these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive highly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior

    Infrared Spectra and Ab Initio Calculations for the F-−(CH4)n (n = 1−8) Anion Clusters

    Get PDF
    Infrared spectra of mass-selected F-−(CH4)n (n = 1−8) clusters are recorded in the CH stretching region (2500−3100 cm-1). Spectra for the n = 1−3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F-−CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the ν1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the ν3 band of free CH4. As nincreases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2ν4 overtone and ν2 + ν4combination levels of the methane solvent molecules. For clusters with n ≤ 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds

    Collective Charge Fluctuations in Single-Electron Processes on Nano-Networks

    Full text link
    Using numerical modeling we study emergence of structure and structure-related nonlinear conduction properties in the self-assembled nanoparticle films. Particularly, we show how different nanoparticle networks emerge within assembly processes with molecular bio-recognition binding. We then simulate the charge transport under voltage bias via single-electron tunnelings through the junctions between nanoparticles on such type of networks. We show how the regular nanoparticle array and topologically inhomogeneous nanonetworks affect the charge transport. We find long-range correlations in the time series of charge fluctuation at individual nanoparticles and of flow along the junctions within the network. These correlations explain the occurrence of a large nonlinearity in the simulated and experimentally measured current-voltage characteristics and non-Gaussian fluctuations of the current at the electrode.Comment: 10 pages, 7 figure

    Scaling of avalanche queues in directed dissipative sandpiles

    Full text link
    We simulate queues of activity in a directed sandpile automaton in 1+1 dimensions by adding grains at the top row with driving rate 0<r10 < r \leq 1. The duration of elementary avalanches is exactly described by the distribution P1(t)t3/2exp(1/Lc)P_1(t) \sim t^{-3/2}\exp{(-1/L_c)}, limited either by the system size or by dissipation at defects Lc=min(L,ξ)L_c= \min (L,\xi). Recognizing the probability P1P_1 as a distribution of service time of jobs arriving at a server with frequency rr, the model represents a new example of the server queue in the queue theory. We study numerically and analytically the tail behavior of the distributions of busy periods and energy dissipated in the queue and the probability of an infinite queue as a function of driving rate.Comment: 11 pages, 9 figures; To appear in Phys. Rev.

    Scale-free energy dissipation and dynamic phase transition in stochastic sandpiles

    Full text link
    We study numerically scaling properties of the distribution of cumulative energy dissipated in an avalanche and the dynamic phase transition in a stochastic directed cellular automaton [B. Tadi\'c and D. Dhar, Phys. Rev. Lett. {\bf 79}, 1519 (1997)] in d=1+1 dimensions. In the critical steady state occurring for the probability of toppling ppp\ge p^\star= 0.70548, the dissipated energy distribution exhibits scaling behavior with new scaling exponents τE\tau_E and D_E for slope and cut-off energy, respectively, indicating that the sandpile surface is a fractal. In contrast to avalanche exponents, the energy exponents appear to be p- dependent in the region pp<1p^\star \le p <1, however the product (τE1)DE(\tau_E-1)D_E remains universal. We estimate the roughness exponent of the transverse section of the pile as χ=0.44±0.04\chi =0.44\pm 0.04. Critical exponents characterizing the dynamic phase transition at pp^\star are obtained by direct simulation and scaling analysis of the survival probability distribution and the average outflow current. The transition belongs to a new universality class with the critical exponents ν=γ=1.22±0.02\nu_\| =\gamma =1.22 \pm 0.02, β=0.56±0.02\beta =0.56\pm 0.02 and ν=0.761±0.029\nu_\bot = 0.761 \pm 0.029, with apparent violation of hyperscaling. Generalized hyperscaling relation leads to β+β=(d1)ν\beta + \beta ^\prime = (d-1)\nu_\bot , where β=0.195±0.012\beta ^\prime = 0.195 \pm 0.012 is the exponent governed by the ultimate survival probability

    Critical exponents at the ferromagnetic transition in tetrakis(diethylamino)ethylene-C60_{60} (TDAE-C60_{60})

    Full text link
    Critical exponents at the ferromagnetic transition were measured for the first time in an organic ferromagnetic material tetrakis(dimethylamino)ethylene fullerene[60] (TDAE-C60_{60}). From a complete magnetization-temperature-field data set near Tc=16.1±0.05,T_{c}=16.1\pm 0.05, we determine the susceptibility and magnetization critical exponents γ=1.22±0.02\gamma =1.22\pm 0.02 and β=0.75±0.03\beta =0.75 \pm 0.03 respectively, and the field vs. magnetization exponent at TcT_{c} of δ=2.28±0.14\delta =2.28\pm 0.14. Hyperscaling is found to be violated by Ωdd1/4\Omega \equiv d^{\prime}-d \approx -1/4, suggesting that the onset of ferromagnetism can be related to percolation of a particular contact configuration of C60_{60} molecular orientations.Comment: 5 pages, including 3 figures; to appear in Phys. Rev. Let

    Barkhausen avalanches in anisotropic ferromagnets with 180180^\circ domain walls

    Full text link
    We show that Barkhausen noise in two-dimensional disordered ferromagnets with extended domain walls is characterized by the avalanche size exponent τs=1.54\tau_s =1.54 at low disorder. With increasing disorder the characteristic domain size is reduced relative to the system size due to nucleation of new domains and a dynamic phase transition occurs to the scaling behavior with τs=1.30\tau_s=1.30. The exponents decrease at finite driving rate. The results agree with recently observed behavior in amorphous Metglas and Fe-Co-B ribbons when the applied anisotropic stress is varied.Comment: Changes in the text and references, To appear in Phys. Rev.
    corecore