198 research outputs found

    Adaptive reflection and focusing of Bose-Einstein condensates

    Full text link
    We report adjustable magnetic `bouncing' and focusing of a dilute 87^{87}Rb Bose gas. Both the condensate production and manipulation are realised using a particularly straight-forward apparatus. The bouncing region is comprised of approximately concentric ellipsoidal magnetic equipotentials with a centre that can be adjusted vertically. We extend, and discuss the limitations of, simple Thomas-Fermi and Monte-Carlo theoretical models for the bouncing, which at present find close agreement with the condensate's evolution. Very strong focusing has been inferred and the observation of atomic matter-wave diffraction should be possible. Prospects look bright for applications in matter-wave atom-optics, due to the very smooth nature of the mirror

    A simple extended-cavity diode laser

    Get PDF
    Operating a laser diode in an extended cavity which provides frequency-selective feedback is a very effective method of reducing the laser's linewidth and improving its tunability. We have developed an extremely simple laser of this type, built from inexpensive commercial components with only a few minor modifications, A 780 nm laser built to this design has an output power of 80 mW, a Linewidth of 350 kHz, and it has been continuously locked to a Doppler-free rubidium transition for several days

    Measurement of the 1s-2s energy interval in muonium

    Get PDF
    No description supplie

    Evaluation of the oesophagogastric cancer associated microbiome: a systematic review and quality assessment

    Get PDF
    Objective. Oesophagogastric cancer is the fifth most common cancer worldwide, with poor survival outcomes. The role of bacteria in the pathogenesis of oesophagogastric cancer remains poorly understood. Design. A systematic search identified studies assessing the oesophagogastric cancer microbiome. The primary outcome was to identify bacterial enrichment specific to oesophagogastric cancer. Secondary outcomes included appraisal of the methodology, diagnostic performance of cancer bacteria and the relationship between oral and tissue microbiome. Results. A total of 9295 articles were identified, and 87 studies were selected for analysis. Five genera were enriched in gastric cancer: Lactobacillus, Streptococcus, Prevotella, Fusobacterium and Veillonella. No clear trends were observed in oesophageal adenocarcinoma. Streptococcus, Prevotella and Fusobacterium were abundant in oesophageal squamous cell carcinoma. Functional analysis supports the role of immune cells, localised inflammation and cancer-specific pathways mediating carcinogenesis. STORMS reporting assessment identified experimental deficiencies, considering batch effects and sources of contamination prevalent in low-biomass samples. Conclusions. Functional analysis of cancer pathways can infer tumorigenesis within the cancer–microbe–immune axis. There is evidence that study design, experimental protocols and analytical techniques could be improved to achieve more accurate and representative results. Whole-genome sequencing is recommended to identify key metabolic and functional capabilities of candidate bacteria biomarkers

    Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates

    Full text link
    There is a pressing need for robust and straightforward methods to create potentials for trapping Bose-Einstein condensates which are simultaneously dynamic, fully arbitrary, and sufficiently stable to not heat the ultracold gas. We show here how to accomplish these goals, using a rapidly-moving laser beam that "paints" a time-averaged optical dipole potential in which we create BECs in a variety of geometries, including toroids, ring lattices, and square lattices. Matter wave interference patterns confirm that the trapped gas is a condensate. As a simple illustration of dynamics, we show that the technique can transform a toroidal condensate into a ring lattice and back into a toroid. The technique is general and should work with any sufficiently polarizable low-energy particles.Comment: Minor text changes and three references added. This is the final version published in New Journal of Physic

    Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems

    Get PDF
    We present a general discussion of the techniques of destabilizing dark states in laser-driven atoms with either a magnetic field or modulated laser polarization. We show that the photon scattering rate is maximized at a particular evolution rate of the dark state. We also find that the atomic resonance curve is significantly broadened when the evolution rate is far from this optimum value. These results are illustrated with detailed examples of destabilizing dark states in some commonly-trapped ions and supported by insights derived from numerical calculations and simple theoretical models.Comment: 14 pages, 10 figure
    • …
    corecore