15 research outputs found

    Network analysis of occupational stress and job satisfaction among radiologists

    Get PDF
    BackgroundOccupational stress and job satisfaction significantly impact the well-being and performance of healthcare professionals, including radiologists. Understanding the complex interplay between these factors through network analysis can provide valuable insights into intervention strategies to enhance workplace satisfaction and productivity.MethodIn this study, a convenience sampling method was used to recruit 312 radiologists for participation. Data on socio-demographic characteristics, job satisfaction measured by the Minnesota job satisfaction questionnaire revised short version (MJSQ-RSV), and occupational stress assessed using the occupational stress scale. Network analysis was employed to analyze the data in this study.ResultsThe network analysis revealed intricate patterns of associations between occupational stress and job satisfaction symptoms among radiologists. Organizational management and occupational interests emerged as crucial nodes in the network, indicating strong relationships within these domains. Additionally, intrinsic satisfaction was identified as a central symptom with high connectivity in the network structure. The stability analysis demonstrated robustness in the network edges and centrality metrics, supporting the reliability of the findings.ConclusionThis study sheds light on the complex relationships between occupational stress and job satisfaction in radiologists, offering valuable insights for targeted interventions and support strategies to promote well-being and job satisfaction in healthcare settings

    PE-Net: a parallel framework for 3D inferior mesenteric artery segmentation

    No full text
    The structural morphology of mesenteric artery vessels is of significant importance for the diagnosis and treatment of colorectal cancer. However, developing automated vessel segmentation methods for this purpose remains challenging. Existing convolution-based segmentation methods have limitations in capturing long-range dependencies, while transformer-based models require large datasets, making them less suitable for tasks with limited training samples. Moreover, over-segmentation, mis-segmentation, and vessel discontinuity are common challenges in vessel segmentation tasks. To address these issues, we propose a parallel encoding architecture that combines transformers and convolutions to retain the advantages of both approaches. The model effectively learns position deviations and enhances robustness for small-scale datasets. Additionally, we introduce a vessel edge capture module to improve vessel continuity and topology. Extensive experimental results demonstrate the improved performance of our model, with Dice Similarity Coefficient and Average Hausdorff Distance scores of 81.64% and 7.7428, respectively

    Skarn Formation and Zn–Cu Mineralization in the Dachang Sn Polymetallic Ore Field, Guangxi: Insights from Skarn Rock Assemblage and Geochemistry

    No full text
    The Dachang is a world-class, super-giant Sn polymetallic ore field mainly composed of Zn–Cu ore bodies proximal to the granitic pluton and Sn polymetallic ore bodies distal to the granitic pluton. In this study, we used petrographic studies and major and trace element geochemistry with calc-silicates from the Zn–Cu ore bodies to constrain the physicochemical conditions of hydrothermal fluids during skarn rock formation and the evolution of ore-forming elements. Two skarn stages were identified based on petrographic observations: Prograde skarn rocks (Stage I), containing garnet, vesuvianite, pyroxene, wollastonite, and retrograde skarn rocks (Stage II), containing axinite, actinolite, epidote, and chlorite. The retrograde skarn rocks are closely associated with mineralization. The geochemical results show that the garnets in the Dachang ore field belong to the grossular–andradite solid solution, in which the early generation of garnet is mainly composed of grossular (average Gro72And25), while the later generation of garnet is mainly composed of andradite (average Gro39And59); the vesuvianites are Al-rich vesuvianites; the pyroxenes form a diopside–hedenbergite solid solution with a composition of Di3–86Hd14–96; the axinites are mainly composed of ferroaxinite; and the actinolites are Fe-actinolite. The mineral assemblage of the skarn rocks indicates that the ore-forming fluid was in a relatively reduced state in the early prograde skarn stage. As the ore-forming fluid evolved, the oxygen fugacity of the ore-forming fluid increased. During the final skarn stage, the ore-forming fluid changed from a relatively oxidized state to a reduced state. The skarn rocks have evolved from early Al-rich to late Fe-rich characteristics, indicating that the early ore-forming fluid was mainly magmatic exsolution fluid, which may mainly reflect the characteristics of magmatic fluids, and the late Fe-rich characteristics of the skarn rocks may indicate that the late hydrothermal fluid was strongly influenced by country rocks. Trace element analyses showed that the Sn content decreased from the prograde skarn stage to the retrograde skarn stage, indicating that Sn mineralization was not achieved by activating and extracting Sn from prograde skarn rocks by hydrothermal fluids. The significant enrichment of Sn in the magmatic hydrothermal fluid is a necessary condition for Sn mineralization. There are various volatile-rich minerals such as axinite, vesuvianite, fluorite, and tourmaline in the Dachang ore field, indicating that the ore-forming fluid contained extensive volatiles B and F, which may be the fundamental reason for the large-scale mineralization of the Dachang ore field

    Multi-Scale Deep Information and Adaptive Attention Mechanism Based Coronary Reconstruction of Superior Mesenteric Artery

    No full text
    Vascular images contain a lot of key information, such as length, diameter and distribution. Thus reconstruction of vessels such as the Superior Mesenteric Artery is critical for the diagnosis of some abdominal diseases. However automatic segmentation of abdominal vessels is extremely challenging due to the multi-scale nature of vessels, boundary-blurring, low contrast, artifact disturbance and vascular cracks in Maximum Intensity Projection images. In this work, we propose a dual attention guided method where an adaptive adjustment field is applied to deal with multi-scale vessel information, and a channel feature fusion module is used to refine the extraction of thin vessels, reducing the interference and background noise. In particular, we propose a novel structure that accepts multiple sequential images as input, and successfully introduces spatial-temporal features by contextual information. A further IterUnet step is introduced to connect tiny cracks caused using CT scans. Comparing our proposed model with other state-of-the-art models, our model yields better segmentation and achieves an average F1 metric of 0.812

    Targeting AXL induces tumor-intrinsic immunogenic response in tyrosine kinase inhibitor-resistant liver cancer

    No full text
    Abstract Hepatocellular carcinoma (HCC) is an aggressive malignancy without effective therapeutic approaches. Here, we evaluate the tumor-intrinsic mechanisms that attenuate the efficacy of immune checkpoint inhibitor (ICI) that is observed in patients with advanced HCC who progress on first-line tyrosine kinase inhibitor (TKI) therapy. Upregulation of AXL observed in sorafenib- and lenvatinib-resistant HCCs is correlated with poor response towards TKI and ICI treatments. AXL upregulation protects sorafenib-resistant HCC cells from oxidative stress, mitochondrial damage, and accompanying immunogenic cell death through suppressed tumor necrosis factor-α (TNF-α) and STING-type I interferon pathways. Pharmacological inhibition of AXL abrogates the protective effect and re-sensitizes TKI-resistant HCC tumors to anti-PD-1 treatment. We suggest that targeting AXL in combination with anti-PD-1 may provide an alternative treatment scheme for HCC patients who progress on TKI treatment

    Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis

    No full text
    Abstract Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution
    corecore