7 research outputs found

    ZIKA: A New System to Empower Health Workers and Local Communities to Improve Surveillance Protocols by E-learning and to Forecast Zika Virus in Real Time in Brazil

    Get PDF
    The devastating consequences of neonates infected with the Zika virus makes it necessary to fight and stop the spread of this virus and its vectors (Aedes mosquitoes). An essential part of the fight against mosquitoes is the use of mobile technology to support routine surveillance and risk assessment by community health workers (health agents). In addition, to improve early warning systems, the public health authorities need to forecast more accurately where an outbreak of the virus and its vector is likely to occur. The ZIKΛ system aims to develop a novel comprehensive framework that combines e-learning to empower health agents, community-based participatory surveillance, and forecasting of occurrences and distribution of the Zika virus and its vectors in real time. This system is currently being implemented in Brazil, in the cities of Campina Grande, Recife, Jaboatão dos Guararapes, and Olinda, the State of Pernambuco and Paraiba with the highest prevalence of the Zika virus disease. In this paper, we present the ZIKA system which helps health agents to learn new techniques and good practices to improve the surveillance of the virus and offer a real time distribution forecast of the virus and the vector. The forecast model is recalibrated in real time with information coming from health agents, governmental institutions, and weather stations to predict the areas with higher risk of a Zika virus outbreak in an interactive map. This mapping and alert system will help governmental institutions to make fast decisions and use their resources more efficiently to stop the spread of the Zika virus. The ZIKA app was developed and built in Ionic which allows for easy cross-platform rendering for both iOS and Android. The system presented in the current paper is one of the first systems combining public health surveillance, citizen-driven participatory reporting and weather data-based prediction. The implementation of the ZIKA system will reduce the devastating consequences of Zika virus in neonates and improve the life quality of vulnerable people in Brazil

    MANTRA: Improving Knowledge of Maternal Health, Neonatal Health, and Geohazards in Women in Rural Nepal Using a Mobile Serious Game

    Get PDF
    Serious games, conveying educational knowledge rather than merely entertainment, are a rapidly expanding research domain for cutting-edge educational technology. Digital interventions like serious games are great opportunities to overcome challenges in low-and-middle-income countries that limit access to health information, such as social barriers like low-literacy and gender. MANTRA: Increasing maternal and child health resilience before, during and after disasters using mobile technology in Nepal takes on these challenges with a novel digital health intervention; a serious mobile game aimed at vulnerable low-literacy female audiences in rural Nepal. The serious game teaches 28 learning objectives of danger signs in geohazards, maternal, and neonatal health to improve knowledge and self-assessment of common conditions and risks to inform healthcare-seeking behavior. Evaluations consisted of recruiting 35 end users to participate in a pre-test assessment, playing the game, post-test assessment, and focus groups to elicit qualitative feedback. Assessments analyzed knowledge gain in two ways; by learning objective with McNemar tests for each learning objective, and by participant scores with paired t-tests of overall scores and by module. Results of assessments of knowledge gain by learning objective (McNemar tests) indicate participants had sufficient prior knowledge to correctly interpret and respond to 26% of pictograms (coded AA), which is a desirable result although without the possibility of improvement through the intervention. The geohazard module had greatest impact as 16% of responses showed knowledge gain (coded BA). The two most successful learning objectives showing statistically significant positive change were evidence of rockfalls and small cracks in the ground (p = < 0.05). Assessment of knowledge gain by participant scores (paired t-tests) showed the 35 participants averaged a 7.7 point improvement (p < 0.001) in the assessment (28 learning objectives). Average change in knowledge of subdivided module scores (each module normalized to 100 points for comparison) was greatest in the geohazard module (9.5 points, p < 0.001), then maternal health (7.4 points, p = 0.0067), and neonatal health (6.0 points, p = 0.013). This evaluation demonstrated that carefully designed digital health interventions with pictograms co-authored by experts and users can teach complex health and geohazard situations. Significant knowledge gain was demonstrated for several learning objectives while those with non-significant or negative change will be re-designed to effectively convey information

    MEWAR: Development of a Cross-Platform Mobile Application and Web Dashboard System for Real-Time Mosquito Surveillance in Northeast Brazil

    Get PDF
    Mosquito surveillance is a crucial process for understanding the population dynamics of mosquitoes, as well as implementing interventional programs for controlling and preventing the spread of mosquito-borne diseases. Environmental surveillance agents who performing routine entomological surveys at properties in areas where mosquito-borne diseases are endemic play a critical role in vector surveillance by searching and destroying mosquito hotspots as well as collate information on locations with increased infestation. Currently, the process of recording information on paper-based forms is time-consuming and painstaking due to manual effort. The introduction of mobile surveillance applications will therefore improve the process of data collection, timely reporting, and field worker performance. Digital-based surveillance is critical in reporting real-time data; indeed, the real-time capture of data with phones could be used for predictive analytical models to predict mosquito population dynamics, enabling early warning detection of hotspots and thus alerting fieldworker agents into immediate action. This paper describes the development of a cross-platform digital system for improving mosquito surveillance in Brazil. It comprises of two components: a dashboard for managers and a mobile application for health agents. The former enables managers to assign properties to health workers who then survey them for mosquitoes and to monitor the progress of inspection visits in real-time. The latter, which is primarily designed as a data collection tool, enables the environmental surveillance agents to act on their assigned tasks of recording the details of the properties at inspections by filling out digital forms built into the mobile application, as well as details relating to mosquito infestation. The system presented in this paper was co-developed with significant input with environmental agents in two Brazilian cities where it is currently being piloted

    Engaging pictograms! A methodology for graphic design in enhancing player engagement as applied to the design of a serious game for nepalese women with low literacy

    Get PDF
    In the graphic design of serious games, player engagement is an important consideration. We propose a new approach towards aiding the graphic designer to consider the major factors relevant to player engagement. This article describes a method for creating effective graphical content for serious games that takes into account the impact of complex pictograms on player engagement and on the learning process. We show how we applied our method to the design of a serious game for mobile phones aimed at Nepalese women in rural areas with low literacy skills. Initial results from case study suggest that our method helps designers to improve the design and the logic behind their use of imagery to the extent where the need to use text in the game’s user interface was removed

    MANTRA: development and localization of a mobile educational health game targeting low literacy players in low and middle income countries

    Get PDF
    BACKGROUND: Mobile technology is increasingly important for delivering public health interventions to remote populations. This research study developed, piloted, and assessed a serious game for mobile devices that teaches geohazard, maternal, and neonatal health messages. This unique mHealth intervention aimed at low-literacy audiences in low resource settings is part of the Maternal and Neonatal Technologies in Rural Areas (MANTRA) project: Increasing maternal and child health resilience before, during, and after disasters using mobile technology in Nepal. METHODS: The serious game was developed through a co-creation process between London and Kathmandu based researchers by email and video-calling, and face-to-face with local stakeholders in Nepal. The process identified core needs, developed appropriate pictograms and mechanics, and tailored the pilot serious game to the local cultural context. Evaluations and feedback from end users took place in rural villages and suburban Kathmandu in Province Three. Field evaluation sessions used mixed methods. Researchers observed game play and held focus group discussions to elicit qualitative feedback and understand engagement, motivation, and usability, and conducted a paired pre- and post-game knowledge assessment. RESULTS: The MANTRA serious game is contextualized to rural Nepal. The game teaches 28 learning objectives in three modules: maternal health, neonatal health, and geohazards, through picture matching with immediate audio and visual feedback. User feedback from focus groups demonstrated high engagement, motivation, and usability of the game. CONCLUSIONS: This MANTRA study is a unique mHealth intervention of a serious game to teach core health and geohazards messages to low-literacy audiences in rural Nepal. Although the mobile game is tailored for this specific context, the developmental process and insights could be transferable to the development of other games-based interventions and contextualized for any part of the world. Successfully targeting this low-literacy and illiterate audience makes the MANTRA development process the first of its kind and a novel research endeavor with potential for widespread impact and adoption following further game development. TRIAL REGISTRATION: This project was approved by the University College London Ethics Committee in London, United Kingdom [10547/001], and the Nepal Health Research Council in Kathmandu, Nepal [Reg. No. 105/2017]. All participants provided informed written consent
    corecore