3 research outputs found

    Rapid and reproducible characterization of sickling during automated deoxygenation in sickle cell disease patients

    Get PDF
    In sickle cell disease (SCD), sickle hemoglobin (HbS) polymerizes upon deoxygenation, resulting in sickling of red blood cells (RBCs). These sickled RBCs have strongly reduced deformability, leading to vaso-occlusive crises and chronic hemolytic anemia. To date, there are no reliable laboratory parameters or assays capable of predicting disease severity or monitoring treatment effects. We here report on the oxygenscan, a newly developed method to measure RBC deformability (expressed as Elongation Index - EI) as a function of pO2. Upon a standardized, 22 minute, automated cycle of deoxygenation (pO2 median 16 mmHg ± 0.17) and reoxygenation, a number of clinically relevant parameters are produced in a highly reproducible manner (coefficients of variation <5%). In particular, physiological modulators of oxygen affinity, such as, pH and 2,3-diphosphoglycerate showed a significant correlation (respectively R = ‑0.993 and R = 0.980) with Point of Sickling (PoS5%), which is defined as the pO2 where a 5% decrease in EI is observed during deoxygenation. Furthermore, in vitro treatment with antisickling agents, including GBT440, which alter the oxygen affinity of hemoglobin, caused a reproducible left-shift of the PoS, indicating improved deformability at lower oxygen tensions. When RBCs from 21 SCD patients were analyzed, we observed a significantly higher PoS in untreated homozygous SCD patients compared to treated patients and other genotypes. We conclude that the oxygenscan is a state-of-the-art technique that allows for rapid analysis of sickling behavior in SCD patients. The method is promising for personalized treatment, development of new treatment strategies and could have potential in prediction of complications

    Threshold Amplitude and Frequency for Ocular Tissue Release from a Vibrating Instrument:An Experimental Study

    No full text
    Purpose. During retinal pigment epithelium (RPE) and choroid graft translocation in the treatment of patients with exudative age-related macular degeneration, the adhesion of the graft to the translocation instrument complicated its submacular release. Vibration of the instrument improved the release of the graft. This study was conducted to validate the effectiveness of the principle of vibration and to determine the threshold amplitude and frequency required for development of an optimized instrument. Methods. An experimental in vitro model with fresh porcine RPE-choroid grafts was used. Release of the graft was studied by a masked observer for amplitudes in the range of 0.05 to 1.2 mm and frequencies in the range of 25 to 200 Hz in the horizontal plane. Results. The minimum threshold amplitude required to release the graft was approximately 0.15 mm from a frequency of 100 Hz and higher. Conclusions. This study confirmed the clinical experience that vibration of an instrument induces the release of the RPE- choroid graft. The minimum threshold amplitude and frequency needed for optimum tissue release were estimated. Copyrigh

    Shear stress affects the intracellular distribution of eNOS: Direct demonstration by a novel in vivo technique

    No full text
    The focal location of atherosclerosis in the vascular tree is correlated with local variations in shear stress. We developed a method to induce defined variations in shear stress in a straight vessel segment of a mouse. To this end, a cylinder with a tapered lumen was placed around the carotid artery, inducing a high shear stress field. Concomitantly, regions of low shear stress and oscillatory shear stress were created upstream and downstream of the device, respectively. This device was used in mice transgenic for an eNOS3GFP fusion gene. We observed a strong induction of endothelial nitric oxide synthase-green fluorescent protein (eNOS-GFP) mRNA expression in the high shear stress region compared with the other regions (P < .05). Quantification of eNOS-GFP fluorescence or of immunoreactivity to the Golgi complex or to platelet endothelial cell adhesion molecule 1 (PECAM-1) showed an increase in the high shear stress region (P < .05) compared with nontreated carotid arteries. Colocalization of eNOS-GFP with either the Golgi complex or PECAM-1 also responded to alterations of shear stress. In conclusion, we showed a direct response of mRNA and protein expression in vivo to induced variations of shear stress. This model provides the opportunity to study the relationship between shear stress alterations, gene expression, and atherosclerosis
    corecore