2 research outputs found

    Bayesian analysis suggests independent development of sensitization to different fungal allergens

    No full text
    Background: Fungi are known for their ability to cause allergies, but data on individual sensitization to them are insufficient. The purpose of the study was to carry out a comprehensive analysis of the fungal allergens’ sensitization profile in the Ukrainian population and to determine both population and individual sensitivity to these allergens. Methods: We utilized a set of ALEX allergy test data from 20,033 inhabitants of 17 regions of Ukraine from 1 to 89 years conducted in 2020–2022. A complex of programs in the Python language was developed and Bayesian network analysis was applied to determine the sensitivity combinations in individual patients to various fungal components. Results: Sensitivity to Alt a 1 dominated and was observed in 79.39% of patients, and 62.17% of them were sensitive solely to Alt a 1. Exclusive sensitivity to Mala s 6 was second in individual patient profiles with a frequency of 4.06%. Combined sensitivity to Alt a 1 – Asp f 3 was third with a share of 3.28%. Pen ch and Cla h extracts stimulated the production of the lowest median sIgE levels. The highest median sIgE levels were for Alt a 1, Mala s 11 and Asp f 6, respectively. Median sIgE levels increased in adults compared to children for all components of Aspergillus fumigatus, as well as for Mala s 5 and Mala s 11. In the rest of the cases, they decreased in adults compared to children. The sensitization rates to fungi in general and specifically to Alternaria were lower in the western parts of Ukraine, especially in the Carpathian region, situated within the Broad-leaved Forest zone. The results of Bayesian modeling revealed that in the case of Alt a 1, the simultaneous absence of sensitivity to Cla h 8, Mala s 11, Mala s 5 and Mala s 6 molecules could condition the presence of sensitization to the major Alternaria allergen with a probability of 92.42%. In all other cases, there was a high probability of absence of sensitivity to particular allergen against the background of absence of sensitivity to other ones, which may indicate the independent development of sensitization to different fungal allergens. Conclusions: Sensitivity to Alt a 1 dominated in the studied population with a lower rate in the western regions. The highest median sIgE levels were induced by Alt a 1, Mala s 11 and Asp f 6. Bayesian Analysis suggest a high probability of the independent development of sensitization to different fungal allergens. The idea that sensitization to one allergen may be protective against sensitization to another one(s) requires further clinical study

    Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe

    No full text
    Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown−no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen−virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations.</p
    corecore