31 research outputs found
Recommended from our members
Genetic Variation in DNA Repair Pathways and Risk of Non-Hodgkin's Lymphoma
Molecular and genetic evidence suggests that DNA repair pathways may contribute to lymphoma susceptibility. Several studies have examined the association of DNA repair genes with lymphoma risk, but the findings from these reports have been inconsistent. Here we provide the results of a focused analysis of genetic variation in DNA repair genes and their association with the risk of non-Hodgkin's lymphoma (NHL). With a population of 1,297 NHL cases and 1,946 controls, we have performed a two-stage case/control association analysis of 446 single nucleotide polymorphisms (SNPs) tagging the genetic variation in 81 DNA repair genes. We found the most significant association with NHL risk in the ATM locus for rs227060 (OR = 1.27, 95% CI: 1.13–1.43, p = 6.77×10−5), which remained significant after adjustment for multiple testing. In a subtype-specific analysis, associations were also observed for the ATM locus among both diffuse large B-cell lymphomas (DLBCL) and small lymphocytic lymphomas (SLL), however there was no association observed among follicular lymphomas (FL). In addition, our study provides suggestive evidence of an interaction between SNPs in MRE11A and NBS1 associated with NHL risk (OR = 0.51, 95% CI: 0.34–0.77, p = 0.0002). Finally, an imputation analysis using the 1,000 Genomes Project data combined with a functional prediction analysis revealed the presence of biologically relevant variants that correlate with the observed association signals. While the findings generated here warrant independent validation, the results of our large study suggest that ATM may be a novel locus associated with the risk of multiple subtypes of NHL
Comprehensive Molecular and Clinicopathologic Analysis of 200 Pulmonary Invasive Mucinous Adenocarcinomas Identifies Distinct Characteristics of Molecular Subtypes
PURPOSE: Invasive mucinous adenocarcinoma (IMA) is a unique subtype of lung adenocarcinoma, characterized genomically by frequent KRAS mutations or specific gene fusions, most commonly involving NRG1. Comprehensive analysis of a large series of IMAs using broad DNA- and RNA-sequencing methods is still lacking, and it remains unclear whether molecular subtypes of IMA differ clinicopathologically.
EXPERIMENTAL DESIGN: A total of 200 IMAs were analyzed by 410-gene DNA next-generation sequencing (MSK-IMPACT; n = 136) or hotspot 8-oncogene genotyping (n = 64). Driver-negative cases were further analyzed by 62-gene RNA sequencing (MSK-Fusion) and those lacking fusions were further tested by whole-exome sequencing and whole-transcriptome sequencing (WTS).
RESULTS: Combined MSK-IMPACT and MSK-Fusion testing identified mutually exclusive driver alterations in 96% of IMAs, including KRAS mutations (76%), NRG1 fusions (7%), ERBB2 alterations (6%), and other less common events. In addition, WTS identified a novel NRG2 fusion (F11R-NRG2). Overall, targetable gene fusions were identified in 51% of KRAS wild-type IMAs, leading to durable responses to targeted therapy in some patients. Compared with KRAS-mutant IMAs, NRG1-rearranged tumors exhibited several more aggressive characteristics, including worse recurrence-free survival (P \u3c 0.0001).
CONCLUSIONS: This is the largest molecular study of IMAs to date, where we demonstrate the presence of a major oncogenic driver in nearly all cases. This study is the first to document more aggressive characteristics of NRG1-rearranged IMAs, ERBB2 as the third most common alteration, and a novel NRG2 fusion in these tumors. Comprehensive molecular testing of KRAS wild-type IMAs that includes fusion testing is essential, given the high prevalence of alterations with established and investigational targeted therapies in this subset
Diverse BRCA1 and BRCA2 Reversion Mutations in Circulating Cell-Free DNA of Therapy-Resistant Breast or Ovarian Cancer
Purpose:; Resistance to platinum-based chemotherapy or PARP inhibition in germline; BRCA1; or; BRCA2; mutation carriers may occur through somatic reversion mutations or intragenic deletions that restore BRCA1 or BRCA2 function. We assessed whether; BRCA1/2; reversion mutations could be identified in circulating cell-free DNA (cfDNA) of patients with ovarian or breast cancer previously treated with platinum and/or PARP inhibitors.; Experimental Design:; cfDNA from 24 prospectively accrued patients with germline; BRCA1; or; BRCA2; mutations, including 19 patients with platinum-resistant/refractory ovarian cancer and five patients with platinum and/or PARP inhibitor pretreated metastatic breast cancer, was subjected to massively parallel sequencing targeting all exons of 141 genes and all exons and introns of; BRCA1; and; BRCA2; Functional studies were performed to assess the impact of the putative; BRCA1/2; reversion mutations on BRCA1/2 function.; Results:; Diverse and often polyclonal putative; BRCA1; or; BRCA2; reversion mutations were identified in cfDNA from four patients with ovarian cancer (21%) and from two patients with breast cancer (40%).; BRCA2; reversion mutations were detected in cfDNA prior to PARP inhibitor treatment in a patient with breast cancer who did not respond to treatment and were enriched in plasma samples after PARP inhibitor therapy. Foci formation and immunoprecipitation assays suggest that a subset of the putative reversion mutations restored BRCA1/2 function.; Conclusions:; Putative; BRCA1/2; reversion mutations can be detected by cfDNA sequencing analysis in patients with ovarian and breast cancer. Our findings warrant further investigation of cfDNA sequencing to identify putative; BRCA1/2; reversion mutations and to aid the selection of patients for PARP inhibition therapy.; Clin Cancer Res; 23(21); 6708-20. ©2017 AACR;
The Somatic Genomic Landscape of Glioblastoma
We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer
Découverte du gène AROM, "Antisense RNA Overlapping MCH gene" (caractérisation d'une nouvelle famille de protéines liant les acides nucléiques)
Chez les mammifères, le gène de la MCH pour " melanin concentrating hormone", code pour deux peptides le NEI et la MCH. Ce gène est impliqué dans de nombreuses fonctions comme la réponse au stress et le contrôle de la prise alimentaire. Nous avons mis en évidence dans des cellules PC12 non stimulées l'expression d'ARN de hauts poids moléculaires contenant les séquences du gène MCH. En combinant les techniques de Northern blot, RACE PCR et RT-PCR, nous avons établi que ces ARN sont transcrits à partir des séquences du brin d'ADN complémentaire au gène de la MCH. Ce gène appelé AROM pour " antisense RNA overlapping MCH gene " est conservé chez le rat, la souris et l'homme. Dans les cellules PC12 traitées au lithium et au NGF, l'expression du gène MCH est régulée par des mécanismes post-transcriptionnels. Les ARN antisens AROM pourraient interagir avec les ARNm MCH, les hybrides ainsi formés modifieraient leur maturation ou leur dégradation. En effet, de nombreux exemples d'ARN antisens sont décrits comme régulateurs de l'expression de gènes "sens". Plusieurs phases ouvertes de lecture ont été identifiées à partir des ARNm AROM. Elles sont la conséquence d'épissages alternatifs et du choix de sites d'initiation de transcription. La protéine la plus longue a été appelée AROM-p64. Les séquences des phases ouvertes de lecture AROM présentent des homologies avec les motifs RRM/leucine-zipper et un domaine d'une hélicase de procaryotes. Grâce à des anticorps dirigés contre les extrémités de la protéine p64, nous avons identifié ces protéines AROM dans les cellules PC12 et les testicules de rat. (...)NICE-BU Sciences (060882101) / SudocSudocFranceF
Expanding the Molecular Characterization of Thoracic Inflammatory Myofibroblastic Tumors beyond ALK Gene Rearrangements
Half of inflammatory myofibroblastic tumors (IMTs) regardless of anatomic location harbor anaplastic lymphoma kinase gene (ALK) rearrangements and overexpress anaplastic lymphoma kinase protein. The wide application of next-generation sequencing and the clinical benefit to tyrosine kinase inhibitors have opened new opportunities for investigation of ALK-negative IMTs