24 research outputs found

    Childrearing style of anxiety-disordered parents

    Get PDF
    FSW - Self-regulation models for health behavior and Psychopathology - Ou

    A Virtual Testing Approach for Laminated Composites Based on Micromechanics

    Get PDF
    International audienceThe chapter deals with a crucial question for the design of composite structures: how can one predict the evolution of damage up to and including final fracture? Virtual testing, whose goal is to drastically reduce the huge number of industrial tests involved in current characterization procedures, constitutes one of today’s main industrial challenges. In this work, one revisits our multiscale modeling answer through its practical aspects. Some complements regarding identification, kinking, and crack initiation are also given. Finally, the current capabilities and limits of this approach are discussed, as well as the computational challenges that are inherent to “Virtual Structural Testing.

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding

    Isogeometric analysis for modelling of failure in advanced composite materials

    Full text link
    Isogeometric analysis (IGA) has recently received much attention in the computational mechanics community. The basic idea is to use splines as the basis functions for finite-element calculations. This enables the integration of computer-aided design and numerical analysis and allows for an exact representation of complex, curved geometries. Another feature of isogeometric basis functions, their higher-order continuity, is even more important for the development of shell and continuum shell elements to analyse structural stability and damage in thin-walled composite structures. The higher-order shape functions can be used to implement relatively straightforward but powerful shell elements. In addition, these shape functions contribute to a better representation of stresses in continuum elements. Finally, interfaces and delaminations can be modelled by reducing the order of the isogeometric shape functions by knot-insertion. In this chapter, we will give an overview of the recent developments in IGA for shell and continuum shell formulations
    corecore