56 research outputs found
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Robust Reproducible Resting State Networks in the Awake Rodent Brain
Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new therapies. RSN reported studies in rodents, however, are few, and most studies are performed with anesthetized rodents that might alter networks and differ from their non-anesthetized state. Acquiring RSN data in the awake rodent avoids the issues of anesthesia effects on brain function. Using high field fMRI we determined RSNs in awake rats using an independent component analysis (ICA) approach, however, ICA analysis can produce a large number of components, some with biological relevance (networks). We further have applied a novel method to determine networks that are robust and reproducible among all the components found with ICA. This analysis indicates that 7 networks are robust and reproducible in the rat and their putative role is discussed
Dose–response effects of oral guanidinoacetic acid on serum creatine, homocysteine and B vitamins levels
Methods: Forty-eight healthy volunteers participated in the randomized, placebo-controlled, double-blind, repeated-measure study. At baseline, after 1, 2, 4 and 6 weeks, participants provided both fasting blood samples and 24-h urine
Migrainomics-identifying brain and genetic markers of migraine
Migraine is one of the world's most prevalent and disabling disorders and imposes an enormous socioeconomic burden. The exact causes of migraine are unknown, and no recognizable diagnostic pathological changes have been identified. Specific identifiable markers of migraine would aid diagnosis and could provide insight into the pathogenesis of the condition, with the potential to direct development of new therapeutics. In the past few years, advances in neuroimaging and genetic studies have provided the most substantial progress towards the identification of markers. A growing number of brain imaging studies have provided important insights into the brain mechanisms that underlie migraine symptoms during and between migraine attacks. Similarly, large-scale genome-wide association studies have identified genetic variants associated with the common forms of migraine-migraine with aura and migraine without aura. In total, 44 independent single-nucleotide polymorphism loci have been robustly associated with the risk of migraine and provide new evidence for the involvement of vascular mechanisms. Both imaging and genetics, therefore, have excellent potential as markers of migraine. In this Review, we provide a summary of results regarding current and potential neuroimaging and genetic markers of migraine, consider what conclusions can be drawn from these markers about migraine mechanisms and discuss the potential of combining imaging and genetics
- …