2,273 research outputs found

    Generalized Network Psychometrics: Combining Network and Latent Variable Models

    Full text link
    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between test items arises from the influence of one or more common latent variables. Here, we present two generalizations of the network model that encompass latent variable structures, establishing network modeling as parts of the more general framework of Structural Equation Modeling (SEM). In the first generalization, we model the covariance structure of latent variables as a network. We term this framework Latent Network Modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships between latent variables can be obtained in an explorative manner. In the second generalization, the residual variance-covariance structure of indicators is modeled as a network. We term this generalization Residual Network Modeling (RNM) and show that, within this framework, identifiable models can be obtained in which local independence is structurally violated. These generalizations allow for a general modeling framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM generalizations. This methodology has been implemented in the free-to-use software package lvnet, which contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algorithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We show in simulation studies that these search algorithms performs adequately in identifying the structure of the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an empirical example on a personality inventory dataset.Comment: Published in Psychometrik

    Time-optimal Control Strategies for Electric Race Cars with Different Transmission Technologies

    Get PDF
    This paper presents models and optimization methods to rapidly compute the achievable lap time of a race car equipped with a battery electric powertrain. Specifically, we first derive a quasi-convex model of the electric powertrain, including the battery, the electric machine, and two transmission technologies: a single-speed fixed gear and a continuously variable transmission (CVT). Second, assuming an expert driver, we formulate the time-optimal control problem for a given driving path and solve it using an iterative convex optimization algorithm. Finally, we showcase our framework by comparing the performance achievable with a single-speed transmission and a CVT on the Le Mans track. Our results show that a CVT can balance its lower efficiency and higher weight with a higher-efficiency and more aggressive motor operation, and significantly outperform a fixed single-gear transmission.Comment: 5 pages, 4 figures, submitted to the 2020 IEEE Vehicle Power and Propulsion Conferenc

    Possible Futures for Network Psychometrics

    Get PDF
    This commentary reflects on the articles included in the Psychometrika Special Issue on Network Psychometrics in Action. The contributions to the special issue are related to several possible future paths for research in this area. These include the development of models to analyze and represent interventions, improvement in exploratory and inferential techniques in network psychometrics, the articulation of psychometric theories in addition to psychometric models, and extensions of network modeling to novel data sources. Finally, network psychometrics is part of a larger movement in psychology that revolves around the analysis of human beings as complex systems, and it is timely that psychometricians start extending their rich modeling tradition to improve and extend the analysis of systems in psychology

    Land Use Scanner: the continuous cycle of application, evaluation and amelioration in landuse modelling

    Get PDF
    The Land Use Scanner is a logit model that simulates future land use in a GIS environment. The model uses claims from sectoral models as input, next to physical suitability, distance decay and policy maps. The model has been applied in several planning and decision making processes, such the Fifth Nota on Physical Planning and Nature Outlook. Evaluation of these applications has led to a series of suggestions for further improvement, such as adaption of the suitability maps, fine-tuning of the translation of sectoral claims to land use claims, and refinement of the priority of allocation for different types of land use. This paper discusses briefly the development of the Land Use Scanner, its application, and the current and prospective adaptions of the model and its input.

    Possible Futures for Network Psychometrics

    Get PDF

    Politie hort mit

    Get PDF
    • …
    corecore