4 research outputs found

    Efficient computation of various valuation adjustments under local Lévy models

    Get PDF
    Various valuation adjustments (XVAs) can be written in terms of nonlinear partial integro-differential equations equivalent to forward-backward SDEs (FBSDEs). In this paper we develop a Fourier-based method for solving FBSDEs in order to efficiently and accurately price Bermudan derivatives, including options and swaptions, with XVA under the flexible dynamics of a local Lévy model: this framework includes a local volatility function and a local jump measure. Due to the unavailability of the characteristic function for such processes, we use an asymptotic approximation based on the adjoint formulation of the problem

    Bermudan option valuation under state-dependent models

    Get PDF
    We consider a defaultable asset whose risk-neutral pricing dynamics are described by an exponential Lévy-type martingale. This class of models allows for a local volatility, local default intensity and a locally dependent Lévy measure. We present a pricing method for Bermudan options based on an analytical approximation of the characteristic function combined with the COS method. Due to a special form of the obtained characteristic function the price can be computed using a fast Fourier transform-based algorithm resulting in a fast and accurate calculation

    Optimally weighted loss functions for solving PDEs with Neural Networks

    No full text
    Recent works have shown that deep neural networks can be employed to solve partial differential equations, giving rise to the framework of physics informed neural networks (Raissi et al., 2007). We introduce a generalization for these methods that manifests as a scaling parameter which balances the relative importance of the different constraints imposed by partial differential equations. A mathematical motivation of these generalized methods is provided, which shows that for linear and well-posed partial differential equations, the functional form is convex. We then derive a choice for the scaling parameter that is optimal with respect to a measure of relative error. Because this optimal choice relies on having full knowledge of analytical solutions, we also propose a heuristic method to approximate this optimal choice. The proposed methods are compared numerically to the original methods on a variety of model partial differential equations, with the number of data points being updated adaptively. For several problems, including high-dimensional PDEs the proposed methods are shown to significantly enhance accuracy
    corecore