6 research outputs found

    Comparative evaluation of autonomic regulation of circulation in patients undergone coronary artery bypass grafting or correction of acquired valvular heart disease

    Get PDF
    The aim of the research was to study the peculiarities of vegetative regulation of blood circulation in cardiac surgery patients who underwent coronary artery bypass grafting (CABG) or correction of acquired valvular heart disease (CAVHD). Material and Methods. In this study we included 42 patients (12 women; 63 (57; 67) years), who underwent CABG, and 36 patients (16 women; 58 (47; 65) years) who underwent CAVHD. The synchronous 15 minutes records of electrocardiogram and photoplethysmogram (PPG) were performed in all patients before and after surgery. Time domain and frequency domain measures of heart rate variability (HRV) and index of synchronization between low-frequency (LF) oscillations in HRV and PPG (index S) were analyzed. Results. Most studied autonomic indices did not have statistically significant differences between patients with CABG and CAVHD in the study stages, except for heart rate, which was higher in patients before CAVHD (p=0,013). Conclusion. The values of HRV and index S do not depend on the difference in the clinical status and the features of performed cardiac surgical interventions between patients with CABG and CAVHD.</p

    Method of synchronization assessment of rythms in regulatory systems for signal analysis in real time

    No full text
    A method is proposed for quantitative assessment of the phase synchronization of 0.1 Hz oscillations in autonomic cardiovascular control by photoplethysmogram analysis in real time. The efficiency of the method is shown in the comparison with the results obtained by the previously developed method

    Investigation of statistical characteristics of interaction between the low-frequency oscillations in heart rate variability and peripheral microcirculation in healthy subjects and myocardial infarction patients

    No full text
    Objective. This study compares the statistical characteristics of interaction between 0.1 Hz oscillations in heart rate variability (HRV) and photoplethysmogram (PPG) in healthy subjects and myocardial infarction (Ml) patients. Material and methods. We studied 23 healthy subjects (20 men and 3 women aged 26Β±3 years) and 23 patients (12 men and 11 women aged 52Β±4 years) at about one month after Ml. The 10-minute signals of simultaneously recorded cardioin-tervalogram (CIG) and PPG were studied. We calculated the total percentage of phase synchronization between the studied 0.1 Hz oscillations and estimated the distribution functions of duration of synchronous and non-synchronous epochs, the variability of basic frequency of oscillations, and variance of phase noises in 0.1 Hz oscillations in HRV and PPG. Results. The total percentage of phase synchronization between 0.1 Hz oscillations is significantly greater in healthy subjects than in Ml patients (47Β±3% and 26Β±4%, respectively). Significant difference between these two groups in the distribution of duration of synchronous and non-synchronous epochs was not revealed. The Ml patients had greater variance between the basic frequencies of 0.1 Hz oscillations in HRV and PPG than healthy subjects. This phenomenon correlates with the increased level of phase noises in the records of Ml patients. Conclusion. The quality of synchronization between 0.1 Hz oscillations in HRV and PPG is associated with the strength of influence of external factors (noises) and variability of the basic frequency of these oscillations

    Synchronization of low-frequency rhythms in electroencephalogram by respiration with linear dependent time frequency.

    No full text
    The aim of the present study was to investigate the features of interaction of low-frequency rhythms in delta band of electroencephalogram (EEG) and processes in vegetative regulation of circulation with respiration. Materials and methods. 19 leads of EEG, photoplethysmogram (PPG) and respiration were simultaneously recorded in four healthy males (19-25 years old) during 30 minutes physiological test with linearly increasing frequency of respiration. Modern methods of nonlinear dynamics were used to diagnose the presence of phase and frequency synchronization between respiration and low-frequency rhythms in delta band of EEG and in PPG. Results. We found significantly long sections of synchronization of delta rhythms in cervical leads of EEG and low-frequency rhythms in PPG by respiration with linearly increasing frequency. Conclusion. Obtained results correlate well with established hypothesis which suggest that low-frequency rhythms in baroreflectory regulation of circulation are in complex dynamic relationships with structures of brain stem. A method was proposed for quantitative evaluation of synchronization strength between respiration and low-frequency rhythms in electrical brain activity in physiological tests with respiration with frequency linearly increasing in time

    ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… процСссов ΠΏΠΎ Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ рСконвалСсцСнтной ΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ COVID-19

    No full text
    Background. The pandemic of the new coronavirus infection has challenged the medical community for quickly finding and implementing effective methods of treatment. In the absence of a vaccine or specific therapy with proven effectiveness, the usage of convalescent plasma can be the one of perspective methods. An important aspect of this technology is the efficient and safe preparation of convalescent plasma. To date, in the world literature there are practically no publications about donor recruitment and the specifics of the preparation of convalescent plasma. Purpose of the research. Presentation of the experience of organizing a workflow for recruiting donors and stockpiling of convalescent plasma with a high titer of virus-neutralizing antibodies to SARS-CoV-2. Methods. The analysis of the work of the Blood Service of the Moscow Department of Health for stockpiling of COVID-19 convalescent plasma has been executed. In total it has been stockpiled 1240 doses. The normative documentation has been developed by a working group on the basis of the current federal legislation of Russian federation and been approved by the Moscow Department of Health. The titer of neutralizing antibodies (VNA) has been determined as the basic method for assessing the immunological viability of convalescent plasma. The main characteristics of donors, the characteristics of the disease course, the results of preliminary testing for the presence of specific antibodies by ELISA and CLIA methods has been compared with VNA titers in the stockpiled convalescent plasma. Results. Due to a Moscow Health Departments order No. 325 dated 01.04.2020 (a basic local regulatory document) it has been developed a regulation for the stockpiling, examination, storage, safety and transfering of fresh frozen pathogen-reduced plasma of COVID-19 convalescent donors to medical organizations of the Moscow Health Department. For arranging an interaction with donors it has been created a call-center. For effective preliminary selection, it has been formed a donor characteristics list, which has been combined with screening of specific antibodies by ELISA and CLIA methods. Conclusions. Developed a system of recruiting donors and procurement process of convalescent plasma for treatment Π‘OVID-19, which includes the necessary regulations, algorithms for the selection and recruitment of donors, the registry of donors and recipients, algorithms, efficiency and safety of convalescent plasma.ОбоснованиС. ПандСмия Π½ΠΎΠ²ΠΎΠΉ коронавирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ поставила ΠΏΠ΅Ρ€Π΅Π΄ мСдицинским сообщСством Π·Π°Π΄Π°Ρ‡Ρƒ быстрого поиска ΠΈ внСдрСния эффСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ лСчСния. Π’ условиях отсутствия Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ ΠΈ срСдств спСцифичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с Π΄ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Π² качСствС ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· пСрспСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ рассматриваСтся трансфузия рСконвалСсцСнтной ΠΏΠ»Π°Π·ΠΌΡ‹ (РП). Π’Π°ΠΆΠ½Ρ‹ΠΌ аспСктом Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ являСтся Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° эффСктивного ΠΈ бСзопасного ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. На сСгодняшний дСнь ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠΎ Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ особСнностях Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ РП Π² ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ практичСски ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. ЦСль исслСдования Анализ ΠΎΠΏΡ‹Ρ‚Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ процСсса ΠΏΠΎ ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ РП с высоким Ρ‚ΠΈΡ‚Ρ€ΠΎΠΌ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ SARS-CoV-2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π‘Π»ΡƒΠΆΠ±Ρ‹ ΠΊΡ€ΠΎΠ²ΠΈ Π”Π΅ΠΏΠ°Ρ€Ρ‚Π°ΠΌΠ΅Π½Ρ‚Π° здравоохранСния Π³. ΠœΠΎΡΠΊΠ²Ρ‹ (Π”Π—Πœ) ΠΏΠΎ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ РП COVID-19. ВсСго Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΎ 1240 Π΄ΠΎΠ·. Нормативная докумСнтация Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ Π½Π° основании Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π”Π—Πœ. Как базовая ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ иммунологичСской ΡΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ РП, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ Ρ‚ΠΈΡ‚Ρ€ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» (ВНА). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сопоставлСниС основных характСристик Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ², особСнностСй тСчСния заболСвания, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ тСстирования Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ спСцифичСских Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ИЀА ΠΈ ИΠ₯ЛА с Ρ‚ΠΈΡ‚Ρ€Π°ΠΌΠΈ ВНА Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΉ РП. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π±ΠΎΡ‚Π° ΠΏΠΎ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅, обслСдованию, Ρ…Ρ€Π°Π½Π΅Π½ΠΈΡŽ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΡŽ бСзопасности ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ Π² мСдицинскиС ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π”ΠœΠ— свСТСзамороТСнной ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Ρ€Π΅Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ‹ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ²-рСконвалСсцСнтов COVID-19 Π±Ρ‹Π»Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½Π° Π½Π° основании ΠΏΡ€ΠΈΠΊΠ°Π·Π° Π”Π—Πœ ΠΎΡ‚ 01.04.2020 β„– 325 ΠΊΠ°ΠΊ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ локального Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°. Для ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ с ΡΠΎΡΡ‚ΠΎΡΠ²ΡˆΠΈΠΌΠΈΡΡ Π΄ΠΎΠ½ΠΎΡ€Π°ΠΌΠΈ ΠΈ привлСчСния рСконвалСсцСнтов использовались рСсурсы ΠΊΠΎΠ»Π»-Ρ†Π΅Π½Ρ‚Ρ€Π°. Для эффСктивного ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π±ΠΎΡ€Π° Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡŒ Π°Π½Π°Π»ΠΈΠ· характСристик Π΄ΠΎΠ½ΠΎΡ€Π° (ΠΏΠ»Π°Π·ΠΌΠ° с наибольшими значСниями Ρ‚ΠΈΡ‚Ρ€Π° ВНА ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΠ° ΠΎΡ‚ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ²-ΠΌΡƒΠΆΡ‡ΠΈΠ½, ΠΏΠ΅Ρ€Π΅Π±ΠΎΠ»Π΅Π²ΡˆΠΈΡ… с ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ явной вирусной ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ) ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ скрининга спСцифичСских Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ИЀА ΠΈ ИΠ₯ЛА. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° систСма обСспСчСния Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Π° Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ процСсса Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ РП для лСчСния Π‘OVID-19, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ‹, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ ΠΎΡ‚Π±ΠΎΡ€Π° ΠΈ привлСчСния Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ², рССстр Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ², Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ обСспСчСния эффСктивности ΠΈ бСзопасности РП
    corecore