34 research outputs found
Estimation and prediction for nonlinear time series
In verschillende situaties verschijnt informatie als een rij van opeenvolgende metingen, een zogenaamde tijdreeks. De analyse van zulke tijdreeksen is gericht op het modelleren de onderliggende correlaties. Op deze manier probeert men inzicht te verkrijgen in de achterliggende mechanismes. Een belangrijke toepassing is het voorspellen van toekomstige waardes. Traditioneel werden lineaire modellen gebruikt, zoals AR en ARMA, waarin een volgende observatie een lineaire combinatie van voorgaande observaties is, samen met een onafhankelijke verstoring. Er zijn desalniettemin voorbeelden van tijdreeksen, zoals tijdreeksen gerelateerd aan chaotische dynamische systemen, waarvoor lineaire modellen zijn geschikt zijn wegens de sterke invloed van niet-lineariteiten. Dit werpt een aantal vragen op: hoe zulke tijdreeksen te herkennen en wat voor niet-lineaire methoden te gebruiken voor modellering en voorspelling. Dit proefschrift is een poging enkele nieuwe bijdragen te leveren aan de theorie van niet-lineaire tijdreeksen. ...
Zie: Samenvatting
Properties of Xylan-Alginate Composites Reinforced with Ultrasound-Activated Birch Cellulose
ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² (ΠΏΠ»Π΅Π½ΠΎΠΊ) ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Ρ: ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Ρ ΠΈ ΠΊΡΠΈΠ»Π°Π½, Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΈΠ· Π΄ΡΠ΅Π²Π΅ΡΠΈΠ½Ρ Π±Π΅ΡΠ΅Π·Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄Π½ΠΎΠΉ Π΄Π΅Π»ΠΈΠ³Π½ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π² ΡΡΠ΅Π΄Π΅ Β«ΡΠΊΡΡΡΠ½Π°Ρ ΠΊΠΈΡΠ»ΠΎΡΠ° β Π²ΠΎΠ΄Π°Β» Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠ° (NH4)6Mo7O24. ΠΡΡ
ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ: ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Π°, ΠΊΡΠΈΠ»Π°Π½, Π°Π»ΡΠ³ΠΈΠ½Π°Ρ Π½Π°ΡΡΠΈΡ ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Ρ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΠΠ‘, ΠΠ₯, ΠΠΠ₯, Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΈ ΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Ρ Π±Π΅ΡΠ΅Π·Ρ, Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠΌ Π² ΡΠΎΡΡΠ°Π² ΠΊΡΠΈΠ»Π°Π½-Π°Π»ΡΠ³ΠΈΠ½Π°ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ², ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠ»Π΅Π½ΠΎΠΊ, ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΈΡ
Π±Π°ΡΡΠ΅ΡΠ½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠ°ΡΠΎΠ² Π²ΠΎΠ΄Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ»Π΅Π½ΠΎΠΊ Π² Π²ΠΎΠ΄Π΅For the first time, polysaccharides: cellulose and xylan, isolated from birch wood by peroxide delignification in βacetic acid-waterβ medium in the presence of catalyst (NH4)6Mo7O24, were proposed to be used to obtain polymer composites (films). The initial components: cellulose, xylan, sodium alginate were characterized using the methods of FTIR, GC, GPC, laser diffraction and chemical analysis.It is shown that the introduction of ultrasound-activated birch bark cellulose into the composition of xylan-alginate composites leads to an increase in the strength of the films, an increase in their barrier properties with respect to water vapor, and also reduces the solubility of the films in wate
RISK MANAGEMENT WITH TAIL COPULAS FOR EMERGING MARKET PORTFOLIOS
We study the tail dependence of emerging markets in South-East Asia and we show that this tail dependence increased during the financial crisis of 2008-2010. After applying ARMA-GARCH models to individual markets, we fit various copulas to the pairs of market returns and find that in most cases tail copulas such as the t-copula and Symmetrised Joe-Clayton provide the best fit. During the crisis, nonlinear dependence measures (such as rank correlations) and the tail dependence coefficients typically increased by tenfold or even more. We apply our method to portfolio Value-at-Risk estimation and show that the copula-based Value-at-Risk performs remarkably well for South-East Asian market portfolios
Three-factor commodity forward curve model and its joint P and Q dynamics
In this paper, we propose a new framework for modeling commodity forward curves. The proposed model describes the dynamics of fundamental driving factors simultaneously under physical (P) and risk-neutral (Q) probability measures. Our model is an extension of the forward curve model by Borovkova and Geman (2007), into several directions. It is a three-factor model, incorporating the synthetic spot price, based on liquidly traded futures, stochastic level of mean reversion and an analog of the stochastic convenience yield. We develop an innovative calibration mechanism based on the Kalman filtering technique and apply it to a large set of Brent oil futures. Additionally, we investigate properties of the time-dependent market price of risk in oil markets. We apply the proposed modeling framework to derivatives pricing, risk management and counterparty credit risk. Finally, we outline a way of adjusting the proposed model to account for negative oil futures prices observed recently due to coronavirus pandemic
An ensemble of LSTM neural networks for high-frequency stock market classification
We propose an ensemble of longβshort-term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performance, which allows us to deal with possible nonstationarities in an innovative way. The performance of the models is measured by area under the curve of the receiver operating characteristic. We evaluate the predictive power of our model on several US large-cap stocks and benchmark it against lasso and ridge logistic classifiers. The proposed model is found to perform better than the benchmark models or equally weighted ensembles
Analysis and Modelling of Electricity Futures Prices
We model electricity futures prices using a seasonal forward curve model, quantifying seasonalities by a deterministic seasonal forward premium. Stochastic features of the futures prices are contained in the stochastic forward premium: a quantity analogous to the well-known convenience yield. The model parameters are estimated from the historical data of IPE electricity futures prices and the spark spread, and electricity forward curves are deseasonalized to reveal their underlying stochastic structure. We apply principal component analysis to the deseasonalized forward curves and develop trading strategies using indicators based on these principal components.