16 research outputs found
Self-interference of a single Bose-Einstein condensate due to boundary effects
A simple model wavefunction, consisting of a linear combination of two
free-particle Gaussians, describes many of the observed features seen in the
interactions of two isolated Bose-Einstein condensates as they expand, overlap,
and interfere. We show that a simple extension of this idea can be used to
predict the qualitative time-development of a single expanding BEC condensate
produced near an infinite wall boundary, giving similar interference phenomena.
We also briefly discuss other possible time-dependent behaviors of single BEC
condensates in restricted geometries,such as wave packet revivals.Comment: 8 pages, no figures, to appear in Physica Script
The Flux-Line Lattice in Superconductors
Magnetic flux can penetrate a type-II superconductor in form of Abrikosov
vortices. These tend to arrange in a triangular flux-line lattice (FLL) which
is more or less perturbed by material inhomogeneities that pin the flux lines,
and in high- supercon- ductors (HTSC's) also by thermal fluctuations. Many
properties of the FLL are well described by the phenomenological
Ginzburg-Landau theory or by the electromagnetic London theory, which treats
the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft
mainly because of the large magnetic penetration depth: The shear modulus of
the FLL is thus small and the tilt modulus is dispersive and becomes very small
for short distortion wavelength. This softness of the FLL is enhanced further
by the pronounced anisotropy and layered structure of HTSC's, which strongly
increases the penetration depth for currents along the c-axis of these uniaxial
crystals and may even cause a decoupling of two-dimensional vortex lattices in
the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause
thermally activated depinning of the flux lines or of the 2D pancake vortices
in the layers. Various phase transitions are predicted for the FLL in layered
HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to
interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do
not exist as postscript file
Acoustic phonon scattering of two-dimensional electrons in GaN/AlGaN heterostructures
We have measured the temperature dependence of the mobility of the two-dimensional electron gas in AlGaN/GaN heterostructures grown on bulk GaN substrates. The linear dependence of the inverse mobility on temperature at temperatures below 50 K indicates the importance of acoustic phonon scattering in these high mobility heterostructures. Using the temperature dependence of the mobility at a range of carrier densities, we determined the GaN conduction band deformation potential to be a(c)=9.1+/-0.7 eV. This result provides a crucial parameter for accurate calculations of intrinsic mobility limits in AlGaN/GaN heterostructures. (C) 2002 American Institute of Physics