406 research outputs found

    Determination of absorption length of CO2 and high power diode laser radiation for ordinary Portland cement and its influence on the depth of melting

    Get PDF
    The laser beam absorption lengths of CO2 and a high power diode laser (HPDL) radiation for concrete have been determined. By employing Beer-Lambert’s law the absorption lengths for concrete of CO2 and a HPDL radiation were 47022 m and 17715 m respectively. Indeed, this was borne out somewhat from a cross-sectional analysis of the melt region produced by both lasers which showed melting occurred to a greater depth when the CO2 laser was used

    The influence of shield gases on the surface condition of laser treated concrete

    Get PDF
    This work aims to elucidate the effects of using O2, Ar and He shield gasses during the treatment of the ordinary Portland cement (OPC) surface of concrete with a high power diode laser (HPDL). The findings showed a marked difference existed in the surface condition of the concrete after HPDL treatment depending on the shield gas used. The use of O2 as the shield gas was seen to result in glazes with far fewer microcracks and porosities than those generated with either Ar or He shield gases. Such differences were found to be due to the smaller O2 gas molecules dissolving molecularly into the open structure of the HPDL generated glaze on the OPC surface of concrete and react with the glass network to increase the fluidity of the melt. This in turn was also seen to affect the cooling rate and therefore the tendency to generate microcracks

    The wear characteristics of a high power diode laser generated glaze on the ordinary Portland cement surface of concrete

    Get PDF
    The ordinary Portland cement (OPC) surface layer of concrete, which was glazed using a high power diode laser (HPDL), has been tested in order to determine the wear characteristics of the glaze. The work showed that the generation of a surface glaze resulted in the considerable enhancement of the wear characteristics over an untreated OPC surface of concrete. Within both normal and corrosive (detergent, NaOH and HNO3) environmental conditions the wear rate of the HPDL generated glaze was 3.5 mg.cm-2.h-1. In contrast, the untreated OPC surface of concrete exhibited a wear rate of 9.8 - 114.8 mg.cm-2.h-1 when exposed to the various reagents. Life assessment testing revealed that the laser glazed OPC surfaces effected an increase in actual wear life of 1.3 to 17.7 times over the untreated OPC surface of concrete, depending upon the corrosive environment. The reasons for these marked improvements in the wear resistance and wear life of the HPDL generated glaze over the untreated OPC surface of concrete can be attributed to firstly, the vitrification of the OPC surface after HPDL treatment which subsequently created a much more dense and consolidated surface, and secondly, the generation of a surface with improved microstructure and phase which is more resistant in corrosive environments

    A comparative analysis of the wear characteristics of glazes generated on the ordinary Portland cement surface of concrete by means of CO2 and high power diode laser radiation

    Get PDF
    The wear characteristics of a glaze generated on the ordinary Portland cement (OPC) surface of concrete using a 2 kW high power diode laser (HPDL) and a 3 kW CO2 laser have been determined. Within both normal and corrosive environmental conditions, the wear rate of the CO2 and HPDL generated glazes were consistently higher than the untreated OPC surface of concrete. Life assessment testing revealed that surface glazing of the OPC with both the CO2 and the HPDL effected an increase in wear life of 1.3 to 17.7 times over an untreated OPC surface, depending upon the corrosive environment. The reasons for these marked improvements in the wear resistance and wear life of the CO2 and HPDL generated glazes over the untreated OPC surface of concrete can be attributed to the partial (CO2 laser) and full (HPDL) vitrification of the OPC surface after laser treatment which subsequently created a much more dense and consolidated surface with improved microstructure and phase characteristics which is more resistant in corrosive environments. In addition, the wear life and the wear rate of the HPDL glaze was found to be consistently higher than that of the CO2 laser glaze. This is due to the fact that CO2 and HPDLs have very different wavelengths; consequently, differences exist between the CO2 and HPDL beam absorption characteristics of the OPC. Such differences give rise to different cooling rates, solidification speeds, etc and are, therefore, the cause of the distinct glaze characteristics which furnishing each microstructure with its own unique wear resistance characteristics

    Surface glazing of concrete using a 2.5 kW high power diode laser and the effects of large beam geometry

    Get PDF
    Interaction of a 2.5 kW high power diode laser (HPDL) beam with the ordinary Portland cement (OPC) surface of concrete has been investigated, resulting in the generation of a tough, inexpensive amorphous glaze. Life assessment testing revealed that the OPC glaze had an increase in wear life of 1.3 to 14.8 times over an untreated OPC surface, depending upon the corrosive environment. Also, variations in the width of the HPDL beam were seen to have a considerable affect on the melt depth. Furthermore, the maximum coverage rate that it may be possible to achieve using the HPDL was calculated as being 1.94 m2/h. It is a distinct possibility that the economic and material benefits to be gained from the deployment of such an effective and efficient large area coating on OPC could be significant

    Augmentation of the mechanical and chemical resistance characteristics of an Al2O3-based refractory by means of high power diode laser surface treatment

    Get PDF
    Augmentation of the wear rate and wear life characteristics of an Al2O3-based refractory within both normal and corrosive (NaOH and HNO3) environmental conditions was effected by means of high power diode laser (HPDL) surface treatment. Life assessment testing revealed that the HPDL generated glaze increased the wear life of the Al2O3-based refractory by 1.27 to 13.44 times depending upon the environmental conditions. Such improvements are attributed to the fact that after laser treatment, the microstructure of the Al2O3-based refractory was altered from a porous, randomly ordered structure, to a much more dense and consolidated structure that contained fewer cracks and porosities. In a world economy that is increasingly placing more importance on material conservation, a technique of this kind for delaying the unavoidable erosion (wear) and corrosion that materials such as the Al2O3-based refractory must face may provide an economically attractive option for contemporary engineers

    High power diode laser surface glazing of concrete

    Get PDF
    This present work describes the utilisation of the relatively novel high power diode laser (HPDL) to generate a surface glaze on the ordinary Portland cement (OPC) surface of concrete. The value of such an investigation would be to facilitate the hitherto impossible task of generating a durable and long-lasting surface seal on the concrete, thereby extending the life and applications base of the concrete. The basic process phenomena are investigated and the laser effects in terms of glaze morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O2 and Ar, during laser processing. HPDL glazing of OPC was successfully demonstrated with power densities as low as 750 W cm-2 and at scanning rates up to 480 mm min-1. The work showed that the generation of the surface glaze resulted in improved mechanical and chemical properties over the untreated OPC surface of concrete. Both untreated and HPDL glazed OPC were tested for pull-off strength, rupture strength, water absorption, wear resistance and corrosion resistance. The OPC laser glaze exhibited clear improvements in wear, water sorptivity, and resistance (up to 80% concentration) to nitric acid, sodium hydroxide and detergent. Life assessment testing revealed that the OPC laser glaze had an increase in actual wear life of 1.3 to 14.8 times over the untreated OPC surface of concrete, depending upon the corrosive environment

    Engineering yeast for high-level production of stilbenoid antioxidants

    Get PDF
    Stilbenoids, including resveratrol and its methylated derivatives, are natural potent antioxidants, produced by some plants in trace amounts as defense compounds. Extraction of stilbenoids from natural sources is costly due to their low abundance and often limited availability of the plant. Here we engineered the yeast Saccharomyces cerevisiae for production of stilbenoids on a simple mineral medium typically used for industrial production. We applied a pull-push-block strain engineering strategy that included overexpression of the resveratrol biosynthesis pathway, optimization of the electron transfer to the cytochrome P450 monooxygenase, increase of the precursors supply, and decrease of the pathway intermediates degradation. Fed-batch fermentation of the final strain resulted in a final titer of 800 mg l(-1) resveratrol, which is by far the highest titer reported to date for production of resveratrol from glucose. We further integrated heterologous methyltransferases into the resveratrol platform strain and hereby demonstrated for the first time de novo biosynthesis of pinostilbene and pterostilbene, which have better stability and uptake in the human body, from glucose

    The enamelling of concrete for improved performance characteristics by means of high power diode laser interaction

    Get PDF
    The contemporary 120 W high power diode laser (HPDL) has been successfully used for the first time to fire an enamel glaze onto the ordinary Portland cement (OPC) surface of concrete. The enamel glazes were generated with laser power densities as low as 1 kW/cm2 and at speeds of up to 780 mm/min, yielding a possible maximum coverage rate of 0.34 m2/h. The enamel glazes were typically 750 m in thickness and displayed no discernible microcracks or porosities. Owing to the wettability characteristics of the OPC, it proved necessary to laser treat the OPC surface prior to firing the enamel. Mechanical testing of the HPDL fired enamel glazes revealed that the average rupture strength was 2.8 J, whilst the rupture strength of the untreated OPC surface was some 4.3 J. The average bond strength of the glaze was recorded as 2.4 MPa as opposed to 6.3 MPa for the untreated OPC. The HPDL fired enamel glazes exhibited exceptional wear and corrosion resistance, wearing by only 3.3 mg/cm2 after 8 h and showing no discernible morphological or microstructural changes when exposed to acid, alkali and detergent. In contrast, the untreated OPC surface was attacked almost immediately by the reagents used and was worn by 78 mg/cm2 after 8 h. In addition, the HPDL fired enamel glaze afforded the concrete bulk complete resistance to water absorption. The findings of life assessment testing revealed that the HPDL fired enamel glaze effected an increase in the wear life of the concrete by 4.5 to 52.7 times over an untreated OPC surface, depending on the corrosive environment

    The development and characteristics of a hand-held high power diode laser-based industrial tile grout removal and single-stage sealing system

    Get PDF
    As the field of laser materials processing becomes ever more diverse, the high power diode laser (HPDL) is now being regarded by many as the most applicable tool. The commercialisation of an industrial epoxy grout removal and single-stage ceramic tile grout sealing process is examined through the development of a hand-held HPDL device in this work. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given. The paper describes the characteristics and feasibility of the industrial epoxy grout removal process. A minimum power density of approximately 3 kW/cm2 was found to exist, whilst the minimum interaction time, below which there was no removal of epoxy tile grout, was found to be approximately 0.5 s. The maximum theoretical removal rate that may be achievable was calculated as being 65.98 mm2/s for a circular 2 mm diameter beam with a power density of 3 kW/cm2 and a traverse speed of 42 mm/s. In addition, the characteristics of the single-stage ceramic tile grout sealing are outlined. The single-stage ceramic tile grout sealing process yielded crack and porosity free seals which were produced in normal atmospheric conditions. Tiles were successfully sealed with power densities as low as 550 W/cm2 and at rates of up to 420 mm/min. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves
    • 

    corecore