7 research outputs found

    Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory

    Full text link
    For SU(2) lattice gauge theory we study numerically the infrared behavior of the Landau gauge ghost and gluon propagators with the special accent on the Gribov copy dependence. Applying a very efficient gauge fixing procedure and generating up to 80 gauge copies we find that the Gribov copy effect for both propagators is essential in the infrared. In particular, our best copy dressing function of the ghost propagator approaches a plateau in the infrared, while for the random first copy it still grows. Our best copy zero-momentum gluon propagator shows a tendency to decrease with growing lattice size which excludes singular solutions. Our results look compatible with the so-called decoupling solution with a non-singular gluon propagator. However, we do not yet consider the Gribov copy problem to be finally resolved.Comment: 9 pages, 9 figure

    Running Gluon Mass from Landau Gauge Lattice QCD Propagator

    Full text link
    The interpretation of the Landau gauge lattice gluon propagator as a massive type bosonic propagator is investigated. Three different scenarios are discussed: i) an infrared constant gluon mass; ii) an ultraviolet constant gluon mass; iii) a momentum dependent mass. We find that the infrared data can be associated with a massive propagator up to momenta ∼500\sim 500 MeV, with a constant gluon mass of 723(11) MeV, if one excludes the zero momentum gluon propagator from the analysis, or 648(7) MeV, if the zero momentum gluon propagator is included in the data sets. The ultraviolet lattice data is not compatible with a massive type propagator with a constant mass. The scenario of a momentum dependent gluon mass gives a decreasing mass with the momentum, which vanishes in the deep ultraviolet region. Furthermore, we show that the functional forms used to describe the decoupling like solution of the Dyson-Schwinger equations are compatible with the lattice data with similar mass scales.Comment: Version to appear in J. Phys. G. New version include some rewriting and new analysis. In particular, the section on the running mass is ne

    Vacuum Energy Density in the Quantum Yang - Mills Theory

    Full text link
    Using the effective potential approach for composite operators, we have formulated a general method of calculation of the truly non-perturbative Yang-Mills vacuum energy density (this is, by definition, the Bag constant apart from the sign). It is the main dynamical characteristic of the QCD ground state. Our method allows one to make it free of the perturbative contributions ('contaminations'), by construction. We also perform an actual numerical calculation of the Bag constant for the confining effective charge. Its choice uniquely defines the Bag constant, which becomes free of all the types of the perturbative contributions now, as well as possessing many other desirable properties as colorless, gauge independence, etc. Using further the trace anomaly relation, we develop a general formalism which makes it possible to relate the Bag constant to the gluon condensate not using the weak coupling solution for the corresponding β\beta function. Our numerical result for the Bag constant shows a good agreement with other phenomenological estimates of the gluon condensate.Comment: 28 pages and 4 figures, typos corrected, added new appendices and new references in comparison with the published versio
    corecore