1,367 research outputs found

    Harmonic behavior of metallic glasses up to the metastable melt

    Get PDF
    In two amorphous alloys ZrTiCuNiBe and ZrAlNiCu coherent neutron scattering has been measured over five decades in energy, including measurements in the metastable melt of a metallic alloy more than 80 K above Tg. In the vibrational spectra a pronounced "boson" peak is found: Even in crystallized samples the density of states exceeds the Debye ω2 model, and in the amorphous state low-frequency vibrations are further enhanced. The peak position shows no dispersion in q, while intensities are strongly correlated with the static structure factor. Over the full energy range the temperature dependence is strictly harmonic. From high-energy resolution measurements we establish lower bounds for the temperatures at which structural α and fast β relaxation become observable

    Within-herd effects of age at test day and lactation stage on test-day yields

    Full text link
    Variance ratios were estimated for random within-herd effects of age at test day and lactation stage, on test-day yield and somatic cell score to determine whether including these effects would improve the accuracy of estimation. Test-day data starting with 1990 calvings for the entire US Jersey population and Holsteins from California, Pennsylvania, Wisconsin, and Texas were analyzed. Test-day yields were adjusted for across-herd effects using solutions from a regional analysis. Estimates of the relative variance ( fraction of total variance) due to within-herd age effects were small, indicating that regional adjustments for age were adequate. The relative variances for within-herd lactation stage were large enough to indicate that accuracy of genetic evaluations could be improved by including herd stage effects in the model for milk, fat, and protein, but not for somatic cell score. Because the within-herd lactation stage effect is assumed to be random, the effect is regressed toward the regional effects for small herds, but in large herds, lactation curves become herd specific. Model comparisons demonstrated the greater explanatory power of the model with a within-herd-stage effect as prediction error standard deviations were greater for the model without this effect. The benefit of the within-herd-stage effects was confirmed in a random regression model by comparing variance components from models with and without random within-herd regressions and through log-likelihood ratio tests

    The Effect of Large Amplitude Fluctuations in the Ginzburg-Landau Phase Transition

    Full text link
    The lattice Ginzburg-Landau model in d=3 and d=2 is simulated, for different values of the coherence length ξ\xi in units of the lattice spacing aa, using a Monte Carlo method. The energy, specific heat, vortex density vv, helicity modulus Γμ\Gamma_\mu and mean square amplitude are measured to map the phase diagram on the plane TξT-\xi. When amplitude fluctuations, controlled by the parameter ξ\xi, become large (ξ1\xi \sim 1) a proliferation of vortex excitations occurs changing the phase transition from continuous to first order.Comment: 4 pages, 5 postscript (eps) figure

    Holocene Earthquakes and Late Pleistocene Slip-Rate Estimates on the Wassuk Range Fault Zone, Nevada

    Get PDF
    The Wassuk Range fault zone is an 80‐km‐long, east‐dipping, high‐angle normal fault that flanks the eastern margin of the Wassuk Range in central Nevada. Observations from two alluvial fan systems truncated by the fault yield information on the vertical slip rate and Holocene earthquake history along the range front. At the apex of the Rose Creek alluvial fan, radiocarbon dating of offset stratigraphy exposed in two fault trenches shows that multiple earthquakes resulted in 7.0 m of vertical offset along the fault since ∼9400 cal B.P. These data yield a Holocene vertical slip rate of 0.7±0.1  mm/yr. The south trench exposure records at least two faulting events since ∼9400 cal B.P., with the most recent displacement postdating ∼2810 cal B.P. The north trench exposure records an ∼1  m offset between ∼610 cal B.P. and A.D. ∼1850, a 1.3‐m minimum offset prior to ∼1460 cal B.P., and one earlier undated earthquake of a similar size. Variations in stratigraphy and limited datable material preclude a unique correlation of paleoevents between the two trenches. Approximately 25 km north, the range‐front fault has truncated and uplifted a remnant of the Penrod Canyon fan by \u3e40  m since the surface was deposited ∼113  ka, based on cosmogenic dating of two large boulders. These data allow an estimate of the minimum late Pleistocene vertical slip rate at \u3e0.3–0.4  mm/yr for the Wassuk Range fault zone

    Holocene Earthquakes and Late Pleistocene Slip Rate Estimates on the Wassuk Range Fault Zone, Nevada, USA

    Get PDF
    The Wassuk Range fault zone is an 80‐km‐long, east‐dipping, high‐angle normal fault that flanks the eastern margin of the Wassuk Range in central Nevada. Observations from two alluvial fan systems truncated by the fault yield information on the vertical slip rate and Holocene earthquake history along the range front. At the apex of the Rose Creek alluvial fan, radiocarbon dating of offset stratigraphy exposed in two fault trenches shows that multiple earthquakes resulted in 7.0 m of vertical offset along the fault since ∼9400 cal B.P. These data yield a Holocene vertical slip rate of 0.7±0.1  mm/yr. The south trench exposure records at least two faulting events since ∼9400 cal B.P., with the most recent displacement postdating ∼2810 cal B.P. The north trench exposure records an ∼1  m offset between ∼610 cal B.P. and A.D. ∼1850, a 1.3‐m minimum offset prior to ∼1460 cal B.P., and one earlier undated earthquake of a similar size. Variations in stratigraphy and limited datable material preclude a unique correlation of paleoevents between the two trenches. Approximately 25 km north, the range‐front fault has truncated and uplifted a remnant of the Penrod Canyon fan by \u3e40  m since the surface was deposited ∼113  ka, based on cosmogenic dating of two large boulders. These data allow an estimate of the minimum late Pleistocene vertical slip rate at \u3e0.3–0.4  mm/yr for the Wassuk Range fault zone

    First Order Transition in the Ginzburg-Landau Model

    Full text link
    The d-dimensional complex Ginzburg-Landau (GL) model is solved according to a variational method by separating phase and amplitude. The GL transition becomes first order for high superfluid density because of effects of phase fluctuations. We discuss its origin with various arguments showing that, in particular for d = 3, the validity of our approach lies precisely in the first order domain.Comment: 4 pages including 2 figure
    corecore