1,182 research outputs found
Ferromagnetic material in the eastern red-spotted newt notophthalmus viridescens
Behavioral results obtained from the eastern red-spotted newt (Notophthalmus viridescens) led to the suggestion of a hybrid homing system involving inputs from both a light-dependent and a non-light-dependent mechanism. To evaluate the possible role of a receptor based on biogenic magnetite in this animal, we performed magnetometry experiments on a set of newts previously used in behavioral assays. The natural remanent magnetization (NRM) carried by these newts was strong enough to be measured easily using a direct-current-biased superconducting quantum interference device functioning as a moment magnetometer. Isothermal remanent magnetizations were two orders of magnitude higher than the NRM, suggesting that ferromagnetic material consistent with magnetite is present in the body of the newt. The NRM has no preferential orientation among the animals when analyzed relative to their body axis, and the demagnetization data show that, overall, the magnetic material grains are not aligned parallel to each other within each newt. Although the precise localization of the particles was not possible, the data indicate that magnetite is not clustered in a limited area. A quantity of single-domain magnetic material is present which would be adequate for use in either a magnetic intensity or direction receptor. Our data, when combined with the functional properties of homing, suggest a link between this behavioral response and the presence of ferromagnetic material, raising the possibility that magnetite is involved at least in the map component of homing of the eastern red-spotted newt
‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?
Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less `fixed' north-northeast—south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the `fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head—body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based `map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90° rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements
Scaling of the localization length in linear electronic and vibrational systems with long-range correlated disorder
The localization lengths of long-range correlated disordered chains are
studied for electronic wavefunctions in the Anderson model and for vibrational
states. A scaling theory close to the band edge is developed in the Anderson
model and supported by numerical simulations. This scaling theory is mapped
onto the vibrational case at small frequencies. It is shown that for small
frequencies, unexpectateley the localization length is smaller for correlated
than for uncorrelated chains.Comment: to be published in PRB, 4 pages, 2 Figure
Individual and collective stock dynamics: intra-day seasonalities
We establish several new stylised facts concerning the intra-day
seasonalities of stock dynamics. Beyond the well known U-shaped pattern of the
volatility, we find that the average correlation between stocks increases
throughout the day, leading to a smaller relative dispersion between stocks.
Somewhat paradoxically, the kurtosis (a measure of volatility surprises)
reaches a minimum at the open of the market, when the volatility is at its
peak. We confirm that the dispersion kurtosis is a markedly decreasing function
of the index return. This means that during large market swings, the
idiosyncratic component of the stock dynamics becomes sub-dominant. In a
nutshell, early hours of trading are dominated by idiosyncratic or sector
specific effects with little surprises, whereas the influence of the market
factor increases throughout the day, and surprises become more frequent.Comment: 9 pages, 7 figure
Statistical properties of a localization-delocalization transition induced by correlated disorder
The exact probability distributions of the resistance, the conductance and
the transmission are calculated for the one-dimensional Anderson model with
long-range correlated off-diagonal disorder at E=0. It is proved that despite
of the Anderson transition in 3D, the functional form of the resistance (and
its related variables) distribution function does not change when there exists
a Metal-Insulator transition induced by correlation between disorders.
Furthermore, we derive analytically all statistical moments of the resistance,
the transmission and the Lyapunov Exponent. The growth rate of the average and
typical resistance decreases when the Hurst exponent tends to its critical
value () from the insulating regime.
In the metallic regime , the distributions become independent of
size. Therefore, the resistance and the transmission fluctuations do not
diverge with system size in the thermodynamic limit
Nonlinear equation for anomalous diffusion: unified power-law and stretched exponential exact solution
The nonlinear diffusion equation is analyzed here, where , and , and are real parameters.
This equation unifies the anomalous diffusion equation on fractals ()
and the spherical anomalous diffusion for porous media (). Exact
point-source solution is obtained, enabling us to describe a large class of
subdiffusion (), normal diffusion () and
superdiffusion (). Furthermore, a thermostatistical basis
for this solution is given from the maximum entropic principle applied to the
Tsallis entropy.Comment: 3 pages, 2 eps figure
Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability
Coherent Synchrotron Radiation (CSR) can play an important role by not only
increasing the energy spread and emittance of a beam, but also leading to a
potential instability. Previous studies of the CSR induced longitudinal
instability were carried out for the CSR impedance due to dipole magnets.
However, many storage rings include long wigglers where a large fraction of the
synchrotron radiation is emitted. This includes high-luminosity factories such
as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future
linear colliders. In this paper, the instability due to the CSR impedance from
a wiggler is studied assuming a large wiggler parameter . The primary
consideration is a low frequency microwave-like instability, which arises near
the pipe cut-off frequency. Detailed results are presented on the growth rate
and threshold for the damping rings of several linear collider designs.
Finally, the optimization of the relative fraction of damping due to the
wiggler systems is discussed for the damping rings.Comment: 10 pages, 7 figure
Adequately assessing dehydration: A holy grail of paediatric emergency medicine
We read the work by Pringle at al. [1] with interest. One of the holy grails of Paediatric Emergency Medicine has been the rapid and reliable identification of the child with serious dehydration, and the converse, the ability to know when to safely discharge a child with a history of gastroenteritis. Recently there has been an external validation of a previously derived clinical dehydration scale by Bailey et al. [2]. It is encouraging to see this type of study as too often scoring systems are created without further testing. However we wondered about the generalisability of this result to routine Pediatric Emergency Care. Specifically we noted that in that study participating nurses undertook an additional training programme prior to study commencement. Is the score still valid if used by Pediatric Emergency Care staff who have not had this additional training? Our previous work has shown that experience and training in assessment may be vital in correctly assigning dehydration categories in children [3]. We found significant variability between junior doctors' assessments of dehydration compared to their seniors. We concluded previous studies on dehydration scoring systems may have benefited from well-trained staff and the introduction of these systems to naive health care professionals may not replicate initial results. The Pringle et al. study, while containing only a small number of subjects, challenges this conclusion again as it appears the care setting may influence the utility of the tool. The holy grail has yet to be found
- …