202 research outputs found

    Criticality Hidden in Acoustic Emissions and in Changing Electrical Resistance during Fracture of Rocks and Cement-Based Materials

    Get PDF
    Acoustic emissions (AE) due to microcracking in solid materials permit the monitoring of fracture processes and the study of failure dynamics. As an alternative method of integrity assessment, measurements of electrical resistance can be used as well. In the literature, however, many studies connect the notion of criticality with AE originating from the fracture, but not with the changes in the electrical properties of materials. In order to further investigate the possible critical behavior of fracture processes in rocks and cement-based materials, we apply natural time (NT) analysis to the time series of AE and resistance measurements, recorded during fracture experiments on cement mortar (CM) and Luserna stone (LS) specimens. The NT analysis indicates that criticality in terms of electrical resistance changes systematically precedes AE criticality for all investigated specimens. The observed greater unpredictability of the CM fracture behavior with respect to LS could be ascribed to the different degree of material homogeneity, since LS (heterogeneous material) expectedly offers more abundant and more easily identifiable fracture precursors than CM (homogenous material). Non-uniqueness of the critical point by varying the detection threshold of cracking events is apparently due to finite size effects which introduce deviations from the self-similarity

    Prestressing wire breakage monitoring using sound event detection

    Get PDF
    Detecting prestressed wire breakage in concrete bridges is essential for ensuring safety and longevity and preventing catastrophic failures. This study proposes a novel approach for wire breakage detection using Mel-frequency cepstral coefficients (MFCCs) and back-propagation neural network (BPNN). Experimental data from two bridges in Italy were acquired to train and test the models. To overcome the limited availability of real-world training data, data augmentation techniques were employed to increase the data set size, enhancing the capability of the models and preventing over-fitting problems. The proposed method uses MFCCs to extract features from acoustic emission signals produced by wire breakage, which are then classified by the BPNN. The results show that the proposed method can detect and classify sound events effectively, demonstrating the promising potential of BPNN for real-time monitoring and diagnosis of bridges. The significance of this work lies in its contribution to improving bridge safety and preventing catastrophic failures. The combination of MFCCs and BPNN offers a new approach to wire breakage detection, while the use of real-world data and data augmentation techniques are significant contributions to overcoming the limited availability of training data. The proposed method has the potential to be a generalized and robust model for real-time monitoring of bridges, ultimately leading to safer and longer-lasting infrastructure

    Purification of recombinant hepatitis delta antigen expressed in E. coli cells

    Get PDF
    AbstractRecombinant DNA technology enables the massive production of recombinant hepatitis delta antigen (recHDAg) retaining immunological properties and transport functions. However, purification procedures of the recombinant delta antigen have, to date, not been described in the literature. We present a purification procedure allowing one to obtain highly purified recHDAg from bacterial cells expressing the hepatitis delta antigen

    Compositional and micro-morphological characterisation of red colourants in archaeological textiles from pharaonic Egypt

    Get PDF
    When the imagination conjures up an image of an Egyptian mummy, it is normally one of a human body wrapped with undyed linen bandages. However, the reality was much more colourful, as shown by the set of red mummy shrouds and textile fragments from Pharaonic Egypt considered in this work. The textiles were subjected to scientific investigation with the main aim of shedding light on the sources of red colour and on the possible reasons for the different levels of colour fading. The red colourants were investigated using various non-invasive and micro-invasive approaches. The results pointed towards the presence of three sources of red colour, which, in increasing order of lightfastness, are safflower (Carthamus tinctorius), madder (Rubia spp.), and red ochre. Micro-morphological observations and elemental analyses also enabled some hypotheses to be formulated regarding the application of these colourants to the textiles. The results not only deepen our knowledge of dyeing technologies in ancient Egypt and shed new light on the function of red shrouds and textiles as part of the funerary practices of Pharaonic Egypt, but are also essential in planning the display and future preservation of these mummies and their associated textiles
    • …
    corecore