4 research outputs found

    Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review

    No full text
    Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects

    Bioaccessibility and Antioxidant Activity of Polyphenols from Pigmented Barley and Wheat

    No full text
    Polyphenols in pigmented cereals are believed to enhance health outcomes through their antioxidant properties. This study aimed to characterise polyphenols from Hordeum vulgare (purple barley), Triticum turgidum (purple wheat) and Triticum aestivum (blue wheat) in order to evaluate their bioaccessibility and antioxidant activity. An ultra-high performance liquid chromatography mass spectrometry coupled with an online 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) system was used to identify the polyphenols and quantify their relative antioxidant levels. Simulated gastrointestinal digestion of the cereals allowed for the assessment of polyphenol bioaccessibility using benchtop assays. Between cereals, the bioaccessible phenolic content was similar following digestion, but the antioxidant activity was significantly different (purple barley > purple wheat > blue wheat; p < 0.01). Among the polyphenols identified, flavan-3-ols and anthocyanins were the least bioaccessible whereas flavones were the most bioaccessible after digestion. This study demonstrated that these pigmented cereal varieties are sources of bioaccessible polyphenols with antioxidant activity. These findings may aid in utilising these pigmented grains for the future design and development of novel functional food products with enhanced health properties

    Polyphenols: Modulators of Platelet Function and Platelet Microparticle Generation?

    No full text
    Platelets and platelet microparticles (PMPs) play a key role in the pathophysiology of vascular disorders such as coronary artery disease and stroke. In atherosclerosis, for example, the disruption of the plaque exposes endogenous agonists such as collagen, which activates platelets. Platelet hyper-activation and the high levels of PMPs generated in such situations pose a thrombotic risk that can lead to strokes or myocardial infarctions. Interestingly, dietary polyphenols are gaining much attention due to their potential to mimic the antiplatelet activity of treatment drugs such as aspirin and clopidogrel that target the glycoprotein VI (GPVI)&ndash;collagen and cyclooxygenease-1 (COX-1)&ndash;thromboxane platelet activation pathways respectively. Platelet function tests such as aggregometry and flow cytometry used to monitor the efficacy of antiplatelet drugs can also be used to assess the antiplatelet potential of dietary polyphenols. Despite the low bioavailability of polyphenols, several in vitro and dietary intervention studies have reported antiplatelet effects of polyphenols. This review presents a summary of platelet function in terms of aggregation, secretion, activation marker expression, and PMP release. Furthermore, the review will critically evaluate studies demonstrating the impact of polyphenols on aggregation and PMP release
    corecore