223 research outputs found

    Improving Sanitation at Scale: Lessons From TSSM Implementation in East Java, Indonesia

    Full text link
    Low-quality or nonexistent sanitation affects health and hinders economic development, especially in the world's poorest countries. To address this issue, the Water and Sanitation Program, a partnership administered by the World Bank and funded by the Bill & Melinda Gates Foundation, launched a global initiative in 2006 at selected sites in India, Indonesia, and Tanzania. In Indonesia, the program was known as the Total Sanitation and Sanitation Marketing initiative, which moved beyond simply building sanitation "hardware" and relied, instead, on providing training and technical assistance to promote collective action to eliminate open defecation and to strengthen demand for and supply of sanitation products and services

    The Effects of Angiotensin Converting Enzyme Inhibitors (ACE-I) on Human N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) Levels: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Tuberculous pericardial effusion is a pro-fibrotic condition that is complicated by constrictive pericarditis in 4% to 8% of cases. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a ubiquitous tetrapeptide with anti-fibrotic properties that is low in tuberculous pericardial effusion, thus providing a potential mechanism for the heightened fibrotic state. Angiotensin-converting enzyme inhibitors (ACE-I), which increase Ac-SDKP levels with anti-fibrotic effects in animal models, are candidate drugs for preventing constrictive pericarditis if they can be shown to have similar effects on Ac-SDKP and fibrosis in human tissues. Objective To systematically review the effects of ACE-Is on Ac-SDKP levels in human tissues. METHODS: We searched five electronic databases (1996 to 2014) and conference abstracts with no language restrictions. Two reviewers independently selected studies, extracted data and assessed methodological quality. The protocol was registered in PROSPERO. RESULTS: Four studies with a total of 206 participants met the inclusion criteria. Three studies (106 participants) assessed the change in plasma levels of Ac-SDKP following ACE-I administration in healthy humans. The administration of an ACE-I was associated with an increase in Ac-SDKP levels (mean difference (MD) 5.07 pmol/ml (95% confidence intervals (CI) 0.64 pmol/ml to 9.51 pmol/ml)). Two studies with 100 participants further assessed the change in Ac-SDKP level in humans with renal failure using ACE-I. The administration of an ACE-I was associated with a significant increase in Ac-SDKP levels (MD 8.94 pmol/ml; 95% CI 2.55 to 15.33; I 2 = 44%). CONCLUSION: ACE-I increased Ac-SDKP levels in human plasma. These findings provide the rationale for testing the impact of ACE-I on Ac-SDKP levels and fibrosis in tuberculous pericarditis

    Longitudinal Predictors of Child Sexual Abuse in a Large Community-Based Sample of South African Youth

    Get PDF
    Sexual abuse has severe negative impacts on children's lives, but little is known about risk factors for sexual abuse victimization in sub-Saharan Africa. This study examined prospective predictors of contact sexual abuse in a random community-based sample of children aged 10 to 17 years (N = 3,515, 56.6% female) in South Africa. Self-report questionnaires using validated scales were completed at baseline and at 1-year follow-up (96.8% retention rate). Cross-sectional and longitudinal associations between hypothesized factors and sexual abuse were examined. For girls, previous sexual abuse (odds ratio [OR] = 3.44, 95% confidence interval [CI] = [2.03, 5.60]), baseline school dropout (OR = 2.76, 95% CI = [1.00, 6.19]), and physical assault in the community (OR = 2.17, 95% CI = [1.29, 3.48]) predicted sexual abuse at follow-up. Peer social support (OR = 0.84, 95% CI = [0.74, 0.98]) acted as a protective factor. Previous contact sexual abuse was the strongest predictor of subsequent sexual abuse victimization. In addition, peer support moderated the relationship between baseline assault and subsequent sexual abuse. For boys, no longitudinal predictors for sexual abuse victimization were identified. These results indicate that the most vulnerable girls-those not in school and with a history of victimization-are at higher risk for sexual abuse victimization. High levels of peer support reduced the risk of sexual abuse victimization and acted as a moderator for those who had experienced physical assault within the community. Interventions to reduce school drop-out rates and revictimization may help prevent contact sexual abuse of girls in South Africa

    Low-Energy Physics in Neutrino LArTPCs

    Get PDF
    In this white paper, we outline some of the scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) detectors. Key takeaways are summarized as follows. 1) LArTPCs have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. 2) Low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. 3) BSM signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of BSM scenarios accessible in LArTPC-based searches. 4) Neutrino interaction cross sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood. Improved theory and experimental measurements are needed. Pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for experimentally improving this understanding. 5) There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. 6) Novel ideas for future LArTPC technology that enhance low-energy capabilities should be explored. These include novel charge enhancement and readout systems, enhanced photon detection, low radioactivity argon, and xenon doping. 7) Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP\delta_{CP}. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter.Comment: Contribution to Snowmass 202

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    Get PDF
    The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.Comment: 39 pages, 19 figure
    corecore