40 research outputs found
Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors
Nucleon electromagnetic form factor data (including recent data) is fitted
with models that respect the confinement and asymptotic freedom properties of
QCD. Gari-Krumpelmann (GK) type models, which include the major vector meson
pole contributions and at high momentum transfer conform to the predictions of
perturbative QCD, are combined with Hohler-Pietarinen (HP) models, which also
include the width of the rho meson and the addition of higher mass vector meson
exchanges, but do not evolve into the explicit form of PQCD at high momentum
transfer. Different parameterizations of the GK model's hadronic form factors,
the effect of including the width of the rho meson and the addition of the next
(in mass) isospin 1 vector meson are considered. The quality of fit and the
consistency of the parameters select three of the combined HP/GK type models.
Projections are made to the higher momentum transfers which are relevant to
electron-deuteron experiments. The projections vary little for the preferred
models, removing much of the ambiguity in electron-nucleus scattering
predictions.Comment: 18pp, 7 figures, using RevTeX with BoxedEPS macros; 1 new figure,
minor textual changes; email correspondence to [email protected]
Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors
The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in
which the rho, omega, and phi vector meson pole contributions evolve at high
momentum transfer to conform to the predictions of perturbative QCD (pQCD), was
recently extended to include the width of the rho meson by substituting the
result of dispersion relations for the pole and the addition of rho' (1450)
isovector vector meson pole. This extended model was shown to produce a good
overall fit to all the available nucleon electromagnetic form factor (emff)
data. Since then new polarization data shows that the electric to magnetic
ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En}
data in their range of momentum transfer. The model is further extended to
include the omega' (1419) isoscalar vector meson pole. It is found that while
this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can
fit the new R_p and R_n well simultaneously. An excellent fit to all the
remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted.
The model predictions are shown up to momentum transfer squared, Q^2, of 8
GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to
[email protected] ; minor typos corrected, figures added, conclusions
extende
Soft Photons in Hadron-Hadron Collisions: Synchrotron Radiation from the QCD Vacuum?
We discuss the production of soft photons in high energy hadron-hadron
collisions. We present a model where quarks and antiquarks in the hadrons emit
``synchrotron light'' when being deflected by the chromomagnetic fields of the
QCD vacuum, which we assume to have a nonperturbative structure. This gives a
source of prompt soft photons with frequencies in the c.m.
system of the collision in addition to hadronic bremsstrahlung. In comparing
the frequency spectrum and rate of ``synchrotron'' photons to experimental
results we find some supporting evidence for their existence. We make an
exclusive--inclusive connection argument to deduce from the ``synchrotron''
effect a behaviour of the neutron electric formfactor proportional
to for . We find this to be consistent with
available data. In our view, soft photon production in high energy
hadron-hadron and lepton-hadron collisions as well as the behaviour of
electromagnetic hadron formfactors for low are thus sensitive probes of
the nonperturbative structure of the QCD vacuum.Comment: Heidelberg preprint HD-THEP-94-36, 31 pages, LaTeX + ZJCITE.sty
(included), 12 figures appended as uuencoded compressed ps-fil
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
Closed-Form transformation between geodetic and ellipsoidal coordinates
We present formulas for direct closed-form transformation between geodetic coordinates(Φ, λ, h) and ellipsoidal coordinates (β, λ, u) for any oblate ellipsoid of revolution.These will be useful for those dealing with ellipsoidal representations of the Earth's gravityfield or other oblate ellipsoidal figures. The numerical stability of the transformations for nearpolarand near-equatorial regions is also considered
Channel-Coupling Effects in High-Energy Hadron Collisions
The Two-Gluon Model of the Pomeron predicts strongly size-dependent
high-energy hadron cross sections. Yet experimental cross sections for radially
excited mesons appear surprisingly close in value. The strong coupling of these
mesons in hadron collisions also predicted by the model permits a qualitative
understanding of this puzzling behavior in terms of eigenmode propagation with
a common eigen-. A detailed semiempirical coupled-channel model of the
Pomeron is constructed to elucidate this and other features of high-energy
hadron cross sections.Comment: 13 pages, latex, no figure
Dust in Supernovae and Supernova Remnants II: Processing and survival
Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations
Nutrition and quality of life in cancer patients.
Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe