40 research outputs found

    Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Get PDF
    Nucleon electromagnetic form factor data (including recent data) is fitted with models that respect the confinement and asymptotic freedom properties of QCD. Gari-Krumpelmann (GK) type models, which include the major vector meson pole contributions and at high momentum transfer conform to the predictions of perturbative QCD, are combined with Hohler-Pietarinen (HP) models, which also include the width of the rho meson and the addition of higher mass vector meson exchanges, but do not evolve into the explicit form of PQCD at high momentum transfer. Different parameterizations of the GK model's hadronic form factors, the effect of including the width of the rho meson and the addition of the next (in mass) isospin 1 vector meson are considered. The quality of fit and the consistency of the parameters select three of the combined HP/GK type models. Projections are made to the higher momentum transfers which are relevant to electron-deuteron experiments. The projections vary little for the preferred models, removing much of the ambiguity in electron-nucleus scattering predictions.Comment: 18pp, 7 figures, using RevTeX with BoxedEPS macros; 1 new figure, minor textual changes; email correspondence to [email protected]

    Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Full text link
    The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in which the rho, omega, and phi vector meson pole contributions evolve at high momentum transfer to conform to the predictions of perturbative QCD (pQCD), was recently extended to include the width of the rho meson by substituting the result of dispersion relations for the pole and the addition of rho' (1450) isovector vector meson pole. This extended model was shown to produce a good overall fit to all the available nucleon electromagnetic form factor (emff) data. Since then new polarization data shows that the electric to magnetic ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En} data in their range of momentum transfer. The model is further extended to include the omega' (1419) isoscalar vector meson pole. It is found that while this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can fit the new R_p and R_n well simultaneously. An excellent fit to all the remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted. The model predictions are shown up to momentum transfer squared, Q^2, of 8 GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to [email protected] ; minor typos corrected, figures added, conclusions extende

    Soft Photons in Hadron-Hadron Collisions: Synchrotron Radiation from the QCD Vacuum?

    Get PDF
    We discuss the production of soft photons in high energy hadron-hadron collisions. We present a model where quarks and antiquarks in the hadrons emit ``synchrotron light'' when being deflected by the chromomagnetic fields of the QCD vacuum, which we assume to have a nonperturbative structure. This gives a source of prompt soft photons with frequencies ω<=300MeV\omega <= 300 MeV in the c.m. system of the collision in addition to hadronic bremsstrahlung. In comparing the frequency spectrum and rate of ``synchrotron'' photons to experimental results we find some supporting evidence for their existence. We make an exclusive--inclusive connection argument to deduce from the ``synchrotron'' effect a behaviour of the neutron electric formfactor GEn(Q2)G_E^n(Q^2) proportional to (Q2)1/6(Q^2)^{1/6} for Q2<20fm2Q^2 < 20 fm^{-2}. We find this to be consistent with available data. In our view, soft photon production in high energy hadron-hadron and lepton-hadron collisions as well as the behaviour of electromagnetic hadron formfactors for low Q2Q^2 are thus sensitive probes of the nonperturbative structure of the QCD vacuum.Comment: Heidelberg preprint HD-THEP-94-36, 31 pages, LaTeX + ZJCITE.sty (included), 12 figures appended as uuencoded compressed ps-fil

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Closed-Form transformation between geodetic and ellipsoidal coordinates

    Get PDF
    We present formulas for direct closed-form transformation between geodetic coordinates(Φ, λ, h) and ellipsoidal coordinates (β, λ, u) for any oblate ellipsoid of revolution.These will be useful for those dealing with ellipsoidal representations of the Earth's gravityfield or other oblate ellipsoidal figures. The numerical stability of the transformations for nearpolarand near-equatorial regions is also considered

    Channel-Coupling Effects in High-Energy Hadron Collisions

    Get PDF
    The Two-Gluon Model of the Pomeron predicts strongly size-dependent high-energy hadron cross sections. Yet experimental cross sections for radially excited mesons appear surprisingly close in value. The strong coupling of these mesons in hadron collisions also predicted by the model permits a qualitative understanding of this puzzling behavior in terms of eigenmode propagation with a common eigen-σ\sigma. A detailed semiempirical coupled-channel model of the Pomeron is constructed to elucidate this and other features of high-energy hadron cross sections.Comment: 13 pages, latex, no figure

    Dust in Supernovae and Supernova Remnants II: Processing and survival

    Get PDF
    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations

    Nutrition and quality of life in cancer patients.

    No full text
    Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore