5 research outputs found

    TGF-β Regulates DNA Methyltransferase Expression in Prostate Cancer, Correlates with Aggressive Capabilities, and Predicts Disease Recurrence

    Get PDF
    DNA methyltransferase (DNMT) is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs). This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP). The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy.We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK) was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer.Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease recurrence after prostatectomy, and may have clinical implications for CaP prognostication and therapy

    Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy

    No full text
    PURPOSE: Transforming growth factor-beta (TGF-beta)-mediated epithelial-to-mesenchymal transition (EMT) has been shown to occur in some cancers; however, the pathway remains controversial and varies with different cancers. In addition, the mechanisms by which TGF-beta and the EMT contribute to prostate cancer recurrence are largely unknown. In this study, we elucidated TGF-beta-mediated EMT as a predictor of disease recurrence after therapy for prostate cancer, which has not been reported before. EXPERIMENTAL DESIGN: We analyzed TGF-beta-induced EMT using nuclear factor-kappaB (NF-kappaB) as an intermediate mediator in prostate cancer cell lines. A total of 287 radical prostatectomy specimens were evaluated using immunohistochemistry in a high-throughput tissue microarray analysis. Levels of TGF-beta signaling components and EMT-related factors were analyzed using specific antibodies. Results were expressed as the percentage of cancer cells that stained positive for a given antibody and were correlated with disease recurrence rates at a mean of 7 years following radical prostatectomy. RESULTS: In prostate cancer cell lines, TGF-beta-induced EMT was mediated by NF-kappaB signaling. Blockade of NF-kappaB or TGF-beta signaling resulted in abrogation of vimentin expression and inhibition of the invasive capability of these cells. There was high risk of biochemical recurrence associated with tumors that displayed high levels of expression of TGF-beta1, vimentin, and NF-kappaB and low level of cytokeratin 18. This was particularly true for vimentin, which is independent of patients\u27 Gleason score. CONCLUSIONS: The detection of NF-kappaB-mediated TGF-beta-induced EMT in primary tumors predicts disease recurrence in prostate cancer patients following radical prostatectomy. The changes in TGF-beta signaling and EMT-related factors provide novel molecular markers that may predict prostate cancer outcomes following treatment
    corecore