8 research outputs found
Vorinostat (SAHA) and Breast Cancer: An Overview
Simple Summary Breast cancer (BC) is the most frequent malignancy diagnosed in 2020 worldwide. Despite significant advances in BC therapy, its pathogenesis is still not fully understood, and effective therapy is one of the most important challenges in current oncology. The article presents the state of the knowledge on vorinostat (SAHA) in the therapy of various histological subtypes of BC, individually or in polytherapy with other active compounds, in in vitro, in vivo and clinical trials settings. Vorinostat (SAHA), an inhibitor of class I and II of histone deacetylases, is the first histone deacetylase inhibitor (HDI) approved for the treatment of cutaneous T-cell lymphoma in 2006. HDIs are promising anticancer agents that inhibit the proliferation of many types of cancer cells including breast carcinoma (BC). BC is a heterogeneous disease with variable biological behavior, morphological features, and response to therapy. Although significant progress in the treatment of BC has been made, high toxicity to normal cells, serious side effects, and the occurrence of multi-drug resistance limit the effective therapy of BC patients. Therefore, new active agents which improve the effectiveness of currently used regimens are highly needed. This manuscript analyzes preclinical and clinical trials data of SAHA, applied individually or in combination with other anticancer agents, considering different histological subtypes of BC.</p
Expression of maize Calcium-Dependent Protein Kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II
In plants, CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs/CPKs) are involved in calcium signaling in response to endogenous and environmental stimuli. Here, we report that ZmCPK11, one of maize CDPKs, participates in salt stress response and tolerance. Salt stress induced expression and upregulated the activity of ZmCPK11 in maize roots and leaves. Activation of ZmCPK11 upon salt stress was also observed in roots and leaves of transgenic Arabidopsis plants expressing ZmCPK11. The transgenic plants showed a long-root phenotype under control conditions and a short-root phenotype under NaCl, abscisic acid (ABA) or jasmonic acid (JA) treatment. Analysis of ABA and JA content in roots indicated that ZmCPK11 can mediate root growth by regulating the levels of these phytohormones. Moreover, 4-week-old transgenic plants were more tolerant to salinity than the wild-type plants. Their leaves were less chlorotic and showed weaker symptoms of senescence accompanied by higher chlorophyll content and higher quantum efficiency of photosystem II. The expression of Na+/K+ transporters (HKT1, SOS1 and NHX1) and transcription factors (CBF1, CBF2, CBF3, ZAT6 and ZAT10) with known links to salinity tolerance was upregulated in roots of the transgenic plants upon salt stress. Furthermore, the transgenic plants accumulated less Na+ in roots and leaves under salinity, and showed a higher K+/Na+ ratio in leaves. These results show that the improved salt tolerance in ZmCPK11-transgenic plants could be due to an upregulation of genes involved in the maintenance of intracellular Na+ and K+ homeostasis and a protection of photosystem II against damage
Histone 3 Lysine 27 Trimethylation Signature in Breast Cancer
Cancer development and progression rely on complicated genetic and also epigenetic changes which regulate gene expression without altering the DNA sequence. Epigenetic mechanisms such as DNA methylation, histone modifications, and regulation by lncRNAs alter protein expression by either promoting gene transcription or repressing it. The presence of so-called chromatin modification marks at various gene promoters and gene bodies is associated with normal cell development but also with tumorigenesis and progression of different types of cancer, including the most frequently diagnosed breast cancer. This review is focused on the significance of one of the abundant post-translational modifications of histone 3- trimethylation of lysine 27 (H3K27me3), which was shown to participate in tumour suppressor genes’ silencing. Unlike other reviews in the field, here the overview of existing evidence linking H3K27me3 status with breast cancer biology and the tumour outcome is presented especially in the context of diverse breast cancer subtypes. Moreover, the potential of agents that target H3K27me3 for the treatment of this complex disease as well as H3K27 methylation in cross-talk with other chromatin modifications and lncRNAs are discussed
Vorinostat (SAHA) and Breast Cancer: An Overview
Vorinostat (SAHA), an inhibitor of class I and II of histone deacetylases, is the first histone deacetylase inhibitor (HDI) approved for the treatment of cutaneous T-cell lymphoma in 2006. HDIs are promising anticancer agents that inhibit the proliferation of many types of cancer cells including breast carcinoma (BC). BC is a heterogeneous disease with variable biological behavior, morphological features, and response to therapy. Although significant progress in the treatment of BC has been made, high toxicity to normal cells, serious side effects, and the occurrence of multi-drug resistance limit the effective therapy of BC patients. Therefore, new active agents which improve the effectiveness of currently used regimens are highly needed. This manuscript analyzes preclinical and clinical trials data of SAHA, applied individually or in combination with other anticancer agents, considering different histological subtypes of BC
Functional Analysis of the Ribosomal uL6 Protein of Saccharomyces cerevisiae
The genome-wide duplication event observed in eukaryotes represents an interesting biological phenomenon, extending the biological capacity of the genome at the expense of the same genetic material. For example, most ribosomal proteins in Saccharomyces cerevisiae are encoded by a pair of paralogous genes. It is thought that gene duplication may contribute to heterogeneity of the translational machinery; however, the exact biological function of this event has not been clarified. In this study, we have investigated the functional impact of one of the duplicated ribosomal proteins, uL6, on the translational apparatus together with its consequences for aging of yeast cells. Our data show that uL6 is not required for cell survival, although lack of this protein decreases the rate of growth and inhibits budding. The uL6 protein is critical for the efficient assembly of the ribosome 60S subunit, and the two uL6 isoforms most likely serve the same function, playing an important role in the adaptation of translational machinery performance to the metabolic needs of the cell. The deletion of a single uL6 gene significantly extends the lifespan but only in cells with a high metabolic rate. We conclude that the maintenance of two copies of the uL6 gene enables the cell to cope with the high demands for effective ribosome synthesis
Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules—among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers
Functional analysis of the uL11 protein impact on translational machinery
<p>The ribosomal GTPase associated center constitutes the ribosomal area, which is the landing platform for translational GTPases and stimulates their hydrolytic activity. The ribosomal stalk represents a landmark structure in this center, and in eukaryotes is composed of uL11, uL10 and P1/P2 proteins. The <i>modus operandi</i> of the uL11 protein has not been exhaustively studied <i>in vivo</i> neither in prokaryotic nor in eukaryotic cells. Using a yeast model, we have brought functional insight into the translational apparatus deprived of uL11, filling the gap between structural and biochemical studies. We show that the uL11 is an important element in various aspects of ‘ribosomal life’. uL11 is involved in ‘birth’ (biogenesis and initiation), by taking part in Tif6 release and contributing to ribosomal subunit-joining at the initiation step of translation. uL11 is particularly engaged in the ‘active life’ of the ribosome, in elongation, being responsible for the interplay with eEF1A and fidelity of translation and contributing to a lesser extent to eEF2-dependent translocation. Our results define the uL11 protein as a critical GAC element universally involved in trGTPase ‘productive state’ stabilization, being primarily a part of the ribosomal element allosterically contributing to the fidelity of the decoding event.</p