101 research outputs found

    Maternally Expressed ÎłTub37CD inDrosophilaIs Differentially Required for Female Meiosis and Embryonic Mitosis

    Get PDF
    AbstractWe report functional analysis of γTub37CD, a maternally synthesized γ-tubulin that is highly expressed during oogenesis and utilized at centrosomes in precellular embryos. TwoγTub37CDmutants contained missense mutations that altered residues conserved in all γ-tubulins and α- and/or β-tubulins. A thirdγTub37CDmissense mutant identified a conserved motif unique to γ-tubulins. A fourthγTub37CDmutant contained a nonsense mutation and the corresponding premature stop codon generated a protein null allele. Immunofluorescence analysis of laid eggs and activated oocytes derived from the mutants revealed microtubules and meiotic spindles that were close to normal even in the absence of γTub37CD. Eggs lacking the maternal γ-tubulin were arrested in meiosis, indicative of a deficiency in activation. Analysis of meiosis within vitroactivation techniques showed that the cortical microtubule cytoskeleton of mature wild-type eggs was reorganized upon activation and expressed as transient assembly of cortical asters, and this cortical reorganization was altered inγTub37CDmutants. In precellular embryos of partial loss of function mutants, spindles were frequently abnormal and cell cycle progression was inhibited. Thus, γTub37CD functions differentially in female meiosis and in the early embryo; while involved in oocyte activation, it is apparently not required or plays a subtle role in formation of the female meiotic spindle which is acentriolar, but is essential for assembly of a discrete bipolar mitotic spindle which is directed by centrosomes organized about centrioles

    Multiplexed spectral imaging of 120 different fluorescent labels

    Get PDF
    This article is distributed under the terms of the Creative Commons public domain dedication. The definitive version was published in PLoS One 11 (2016): e0158495, doi:10.1371/journal.pone.0158495.The number of fluorescent labels that can unambiguously be distinguished in a single image when acquired through band pass filters is severely limited by the spectral overlap of available fluorophores. The recent development of spectral microscopy and the application of linear unmixing algorithms to spectrally recorded image data have allowed simultaneous imaging of fluorophores with highly overlapping spectra. However, the number of distinguishable fluorophores is still limited by the unavoidable decrease in signal to noise ratio when fluorescence signals are fractionated over multiple wavelength bins. Here we present a spectral image analysis algorithm to greatly expand the number of distinguishable objects labeled with binary combinations of fluorophores. Our algorithm utilizes a priori knowledge about labeled specimens and imposes a binary label constraint on the unmixing solution. We have applied our labeling and analysis strategy to identify microbes labeled by fluorescence in situ hybridization and here demonstrate the ability to distinguish 120 differently labeled microbes in a single image.This work was supported by Grant 2007-3- 13 from the Alfred P. Sloan Foundation (to GGB), National Institutes of Health Grant 1RC1-DE020630 from the National Institute of Dental and Craniofacial Research (NIDCR) (to GGB) and by National Institutes of Health Fellowship 1F31-DE019576 from NIDCR (to AMV)

    Individuality, stability, and variability of the plaque microbiome

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 564, doi:10.3389/fmicb.2016.00564.Dental plaque is a bacterial biofilm composed of a characteristic set of organisms. Relatively little information from cultivation-independent, high-throughput analyses has been published on the temporal dynamics of the dental plaque microbiome. We used Minimum Entropy Decomposition, an information theory-based approach similar to oligotyping that provides single-nucleotide resolution, to analyze a previously published time series data set and investigate the dynamics of the plaque microbiome at various analytic and taxonomic levels. At both the genus and 97% Operational Taxonomic Unit (OTU) levels of resolution, the range of variation within each individual overlapped that of other individuals in the data set. When analyzed at the oligotype level, however, the overlap largely disappeared, showing that single-nucleotide resolution enables differentiation of individuals from one another without ambiguity. The overwhelming majority of the plaque community in all samples was made up of bacteria from a moderate number of plaque-typical genera, indicating that the overall community framework is shared among individuals. Each of these genera fluctuated in abundance around a stable mean that varied between individuals, with some genera having higher inter-individual variability than others. Thus, at the genus level, differences between individuals lay not in the identity of the major genera but in consistently differing proportions of these genera from mouth to mouth. However, at the oligotype level, we detected oligotype “fingerprints,” a highly individual-specific set of persistently abundant oligotypes fluctuating around a stable mean over time. For example, within the genus Corynebacterium, more than a dozen oligotypes were detectable in each individual, of which a different subset reached high abundance in any given person. This pattern suggests that each mouth contains a subtly different community of organisms. We also compared the Chinese plaque community characterized here to previously characterized Western plaque communities, as represented by analyses of data emerging from the Human Microbiome Project, and found no major differences between Chinese and Western supragingival plaque. In conclusion, we found the plaque microbiome to be highly individualized at the oligotype level and characterized by stability of community membership, with variability in the relative abundance of community members between individuals and over time.Our work was supported by National Institutes of Health (NIH) National Institute of Dental and Craniofacial Research Grant DE022586 (to GGB). Additional support was provided by Harvard University's Department of Organismic and Evolutionary Biology graduate program (to DRU)

    Spatial Ecology of the Human Tongue Dorsum Microbiome

    Get PDF
    A fundamental question in microbial ecology is how microbes are spatially organized with respect to each other and their host. A test bed for examining this question is the tongue dorsum, which harbors a complex and important microbial community. Here, we use multiplexed fluorescence spectral imaging to investigate the organization of the tongue microbiome at micron to hundred-micron scales. We design oligonucleotide probes for taxa both abundant and prevalent, as determined by sequence analysis. Imaging reveals a highly structured spatial organization of microbial consortia, ranging in linear dimension from tens to hundreds of microns. The consortia appear to develop from a core of epithelial cells, with taxa clustering in domains suggestive of clonal expansion. Quantitative proximity analysis provides the basis for a model of tongue dorsum microbiome organization and dynamics. Our work illustrates how high-resolution analysis of micron-scale organization provides insights into physiological functions and microbiome-host interactions

    p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions

    Get PDF
    p120 catenin (p120) is a component of adherens junctions and has been implicated in regulating cadherin-based cell adhesion as well as the activity of Rho small GTPases, but its exact roles in cell–cell adhesion are unclear. Using time-lapse imaging, we show that p120-GFP associates with vesicles and exhibits unidirectional movements along microtubules. Furthermore, p120 forms a complex with kinesin heavy chain through the p120 NH2-terminal head domain. Overexpression of p120, but not an NH2-terminal deletion mutant deficient in kinesin binding, recruits endogenous kinesin to N-cadherin. Disruption of the interaction between N-cadherin and p120, or the interaction between p120 and kinesin, leads to a delayed accumulation of N-cadherin at cell–cell contacts during calcium-initiated junction reassembly. Our analyses identify a novel role of p120 in promoting cell surface trafficking of cadherins via association and recruitment of kinesin
    • …
    corecore