16 research outputs found

    Optimal Modulation Current for Gain-Switching Lasers

    Full text link
    This paper formally shows that an exponentially rising current is optimal in terms of resistive ohmic loss for driving a semiconductor laser into the gain-switching mode. A metric to quantify the quality of laser operation that measures the similarity of a generated optical pulse to the delta function is proposed. Several circuit implementations to approximate exponentially rising current are developed, including using a driver circuit with BJT output stage, a network of RLC circuits, and a saturating inductor. An experimental comparison between a state-of-the-art sinewave resonant driver circuit and a directly driven laser is performed that favors the latest variant of the driver

    Identification of phases, symmetries and defects through local crystallography

    Get PDF
    Advances in electron and probe microscopies allow 10 pm or higher precision in measurements of atomic positions. This level of fidelity is sufficient to correlate the length (and hence energy) of bonds, as well as bond angles to functional properties of materials. Traditionally, this relied on mapping locally measured parameters to macroscopic variables, for example, average unit cell. This description effectively ignores the information contained in the microscopic degrees of freedom available in a high-resolution image. Here we introduce an approach for local analysis of material structure based on statistical analysis of individual atomic neighbourhoods. Clustering and multivariate algorithms such as principal component analysis explore the connectivity of lattice and bond structure, as well as identify minute structural distortions, thus allowing for chemical description and identification of phases. This analysis lays the framework for building image genomes and structure–property libraries, based on conjoining structural and spectral realms through local atomic behaviour

    Kernel Flow:a high channel count scalable time-domain functional near-infrared spectroscopy system

    Get PDF
    Significance: Time-domain functional near-infrared spectroscopy (TD-fNIRS) has been considered as the gold standard of noninvasive optical brain imaging devices. However, due to the high cost, complexity, and large form factor, it has not been as widely adopted as continuous wave NIRS systems. Aim: Kernel Flow is a TD-fNIRS system that has been designed to break through these limitations by maintaining the performance of a research grade TD-fNIRS system while integrating all of the components into a small modular device. Approach: The Kernel Flow modules are built around miniaturized laser drivers, custom integrated circuits, and specialized detectors. The modules can be assembled into a system with dense channel coverage over the entire head. Results: We show performance similar to benchtop systems with our miniaturized device as characterized by standardized tissue and optical phantom protocols for TD-fNIRS and human neuroscience results. Conclusions: The miniaturized design of the Kernel Flow system allows for broader applications of TD-fNIRS.</p

    Parameter homotopy continuation for feedback linearization of non-regular control-affine nonlinear systems

    Get PDF
    In this article feedback linearization for control-affine nonlinear systems is extended to systems where linearization is not feasible in the complete state space by combining state feedback linearization and homotopy numerical continuation in subspaces of the phase space where feedback linearization fails. Starting from the conceptual simplicity of feedback linearization, this new method expands the scope of their applicability to irregular systems with poorly expressed relative degree. The method is illustrated on a simple SISO–system and by controlling the speed and the rotor flux linkage in a three phase induction machine

    Energy efficient control of an induction machine under torque step changes

    No full text
    Methods for increasing the energy efficiency of induction motors by an appropriate control strategy have been a subject of research during the last years. Several methods for loss minimization have been developed for induction motors operated in a steady state. In recent years, some solutions for the dynamic case have been given as well either using an online or offline optimization approach, implying a certain computational burden, which is undesired in practice. This paper shows that the appropriate application of steady state techniques during transients due to a changing motor torque is a suboptimal strategy with an acceptable performance for efficiency optimization given an induction machine where saturation effects of the main inductance must be considered. The optimization problem is simplified such that a simple suboptimal solution is possible and the quality of the suboptimal solution is investigated by simulations and measurements. The proposed solution is simple, easy to implement, and does not require an online optimization. In addition, the influence of magnetizing induction saturation is considered
    corecore