4 research outputs found
Conformal and Affine Hamiltonian Dynamics of General Relativity
The Hamiltonian approach to the General Relativity is formulated as a joint
nonlinear realization of conformal and affine symmetries by means of the Dirac
scalar dilaton and the Maurer-Cartan forms. The dominance of the Casimir vacuum
energy of physical fields provides a good description of the type Ia supernova
luminosity distance--redshift relation. Introducing the uncertainty principle
at the Planck's epoch within our model, we obtain the hierarchy of the Universe
energy scales, which is supported by the observational data. We found that the
invariance of the Maurer-Cartan forms with respect to the general coordinate
transformation yields a single-component strong gravitational waves. The
Hamiltonian dynamics of the model describes the effect of an intensive vacuum
creation of gravitons and the minimal coupling scalar (Higgs) bosons in the
Early Universe.Comment: 37 pages, version submitted to Gen. Rel. Gra